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Bitdefender

Data: Graph Structure

Tasks where we have access or we can
create a graph structure.

A graph G is characterized by:

® aset of nodes
X = {x;li € 1..N}

® connected by edges
&= {eij\i,j S 1..N}
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Data: Graph Structure Bitdefender

Tasks where we have access or we can
create a graph structure.

A graph G is characterized by:
® aset of nodes
X = {x;]i € 1..N}
® connected by edges
&= {eij\i,j S 1..N}

Each node: is characterized by a set of fea-
tures z; € RP
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Bitdefender

Data: Graph Structure - Nodes

X e RNXD

® all the nodes z; € R” are
stacked into a matrix X € RVxDP

® each row corresponds to a node
x; € RP
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Data: Graph Structure - Edges Bitdefender

A e RV*N

1 2 3 4 5 6 7 8 9
' ‘1’ l; z g g z 2 g e the edges & could be
2 .
sTaTolo oA oo represented by an adjacency
alo[1]o]o]1]|olalo]0 matrix A € RV*N
:’gg: ;ggggg ® a;; # 0if there is an edge
SToTol1lololo ol between node i and node j
slo|ojofofojo]1]0]1
9/0|0|0[0|O0|O|T|1]|0
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Data: Graph Structure - Edges Bitdefender

A e RV*N

12345 67 8 s @ un-directed graph: adjacency
v]0]1j0j0j0j0]0j0|O matrix is symmetric
2(1/0{0(0|0|0|0|0]|O . A .
s olololoMmiololol © directed graph: adjacency
alof1|o]o]1]0]o]0]0 matrix is not symmetric
s5/0/o0[1|1]0]0|0|0]0 ® ... ; : .
foToTeloTo i ToTo o a”.yé()lfthere is an edge from j
7/0[0|1(0|0|0|0|O0]1 tol
sj0jojojojojo1j0j0o| e gagraph could contain self-loops
9/0|0|0[0|O0|O|T|1]|0
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GNNs Goal

e Based on the node features (X) and the graph structure
(A), we want to learn a representation of the graph.
® Depending on the task, the representation could be:
node level: Y € RV*K

2222) node
> property

Bitdefender
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G NN S G oa | Bitdefender

e Based on the node features (X) and the graph structure
(A), we want to learn a representation of the graph.
® Depending on the task, the representation could be:

node level: Y € RV*K
edge level: Y ¢ RM*K

2222) node
> property

edge
property
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G NN S G oa | Bitdefender

e Based on the node features (X) and the graph structure
(A), we want to learn a representation of the graph.
® Depending on the task, the representation could be:
node level: Y € RV*K

edge level: Y ¢ RM*K
graph level: Y ¢ RX

22=2) node
> property

edge
property S graph
property
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Properties: structure Bitdefender

Structure - dependent
the processing should take into account the structure of the graphs

the processing should take into account how nodes are connected

CONNECTIVTY
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Properties: permutation invariance and equivariance

There is no canonical order for the nodes of the graph.

Bitdefender

The global output of the graph processing should be invariant to the order of the nodes.

f(PX,PAP") = f(X, A)

N L N R

© ® N o e A w N =

olo|o o|lo|o|=|=|o|-

olo|o olo|=|o|o|=|™

l:o-n‘_l_nal:o-nm

olo|o o|a|o|lo|o|o|>

olo|o olo|=|=|o|o|x

olo|o o|lo|o|=|o|o|e

= |=|o o|lo|e|=|o|o|~

2 |lo|= olo|o|o|o|o|=

o|=|= olo|o|o|o|o|e
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Properties: permutation invariance and equivariance Bitdefender

There is no canonical order for the nodes of the graph.

The global output of the graph processing should be invariant to the order of the nodes.

f(PX,PAP") = f(X, A)

X A
12 3 4 5 6 7 8 9
1 1/of[1/0 ofofo]o|0 1
2 2[1]0fo0o ojojo|o|0 0
3 s|ojofo ofojo|1][1 0
4 al0|1]/0 of1]{0f0f0 0 Y
s s|ojojo 1]/ofo]|o0]0 1
6 6|0|0fo0o 0jojo|o|0 1
7 7(0|0[1 ojo|o|0f1
8 s|ojo|1 ofojo|1]|0 0
9 ol1|ofofof1][1][1]|0]|0
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Properties: permutation invariance and equivariance Bitdefender

There is no canonical order for the nodes of the graph.

If we permute the input nodes of the graph, the nodes’ output should be permuted in
the same way.

f(PX,PAP") = Pf(X,A)

olo|a ala|o|o|o|=]w
= |lo|= o|o|o|o|o|o|x
o|a|= o|lo|o|o|o|o|e

[ N R N S O
olo|o olo|o|=|=|o|-
o|lo|o o|o|=|o|lo|=|r
o|lo|o o|=|o|o|o|o|>
olo|o o|o|=|=|o|o|«
olo|o o|lo|o|=|o|o|=
—|=|o o|o|o|=|o|o|~
© @ N e e s W N =

P N N N
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Properties: permutation invariance and equivariance Bitdefender

There is no canonical order for the nodes of the graph.

If we permute the input nodes of the graph, the nodes’ output should be permuted in
the same way.

f(PX,PAP") = Pf(X, A)

X A Y
1 2 3 4 5 6 7 8 9
1 1fo]1]o]o]ofo]o]o]1 !
2 2[1]ofo]o]o]o]o]0]0 2
3 slofofofofofo[1]1]0 3
4 alof1]o]o][1]0]0]0]0 N
5 slolofof[1]o]o]o]o]1 s
6 s|ojofofofofofofo]1] ¢
7 710lol1]0]o]ofol1]1 4
8 slofof1]o]o]o[1]0]0 &
9 o|1]/ofofo|1|[1][1]0]0 9
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Convolutional Network Bitdefender

® takes into account a neighbourhood

® the structure is fixed: a grid for 2D Conv or a
sequence for 1D Conv

® the model is invariant to translations

14/66



Convolutional Network Bitdefender

yi= ) wt;
JEN;
For a convolutional network the neighbourhood is

o fixed: for a K x K convolutional filter we
combine exactly K2 neighbours

¢ ordered: we can impose a canonical order among
neighbours (left, right, up, down)
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Convolutional Network Bitdefender

Yi = Z w;T; Can we do the same for
JEN; graphs?
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Convolutional Network Bitdefender

e can't have variable

Y = Z w;; Y = Z wj T number of weights
FEN; JEN; ® have to establish an
order
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Convolutional Network Bitdefender

Y = Z Wi Y = Z w T ® Solution: same w for all
JEN; JEN; nodes
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Bitdefender

Graph Propagation

Simple graph representation (setw = 1): y; =2+ Y _ 5
JEN;

19/66



Bitdefender

Graph Propagation

Simple graph representation (setw = 1): y; =2+ Y _ 5
JEN;

20/66



Bitdefender

Graph Propagation

Simple graph representation (setw = 1): y; =2+ Y _ 5

20/66



Bitdefender

Graph Propagation

Simple graph representation (setw = 1): y; =2+ Y _ 5
JEN;

20/66



Bitdefender

Graph Propagation

Simple graph representation (setw = 1): y; =2+ Y _ 5
JEN;

20/66



Bitdefender
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Bitdefender

Graph Propagation

Simple graph propagation (set w = 1): y; = z; + Z x;
JEN;

e if applied iteratively, it takes into account the structure
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Simplest Graph Propagation Bitdefender

Yi = EjE./\[i xj can be rewritten in a compact, matrix formas Y = AX

AcRVN X eRY Y ¢ RY

olofo]|o
110(1]0
0o|o|o]1 =
olofo]|o
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Simplest Graph Propagation Bitdefender

Yi = EjE./\[i xj can be rewritten in a compact, matrix formas Y = AX

AcRVN X eRrN Y e RY

o|lo|—~|O
olo|lo|©
o|o|—=]|O
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Simplest Graph Propagation Bitdefender

Yi = EjE./\[i xj can be rewritten in a compact, matrix formas Y = AX

AcRVN X eRrN Y e RY

o|lo|—-|O
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Simplest Graph Propagation Bitdefender

Yi = EjE./\[i xj can be rewritten in a compact, matrix formas Y = AX

AcRVN X RN Y e RY

o|lo|—~|O
olo|lo|©
o|o|—=]|O
o|=|O|O
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Simplest Graph Propagation Bitdefender

Yi = ;e ¢ Nodes could have high-dimensional representation X ¢ RNxD

AcRYN X eRVP Yy e RV

@

ololo]o 2 0
1({0|1]0 z3 . z1+T3
@ @ ololol1 2 | 21
ololo]o 24 0
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Simplest Graph Propagation

Bitdefender

yi = x; + ZjeM; x; We should take into account also the current node - self-loops.

8@

®

@®

AecRVN X eRVP yeRN<D
110/0/0 z 1

1 1101 0 x2 . T1+To+ T3
0[0[1(1 z3 - T3+x4
00|01 T4 T4
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Bitdefender

Simplest Graph Propagation

To combine more complex representations:
Yi =$¢+ng/\fi Ty — Yi =$¢W+ng/\fi z;W

XERNXD WERDXC YG]RNXC

A .'EIW
T2 = oW
3 xz3W

: T4 1/'4W
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Bitdefender

Simplest Graph Propagation

To combine more complex representations:
Yi :$i+2j€/\/’i Ty — Yi =$¢W+ng/\fi z;W

The operations performed in the graph could be
oW rewritten as:
Y = AXW

Iteratively, for more layers:

Y = Ac(AXW1)Ws)
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GNNs: Message Passing Framework - Send Bitdefender

Send Function
- for each pair of 2 connected nodes, create a message

My = fmsg(l‘i,xj) € RC V(l,]) € &

mse = fmsg(‘:‘:‘:‘:‘ 3 D:D:‘)
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GNNs: Message Passing Framework - Send Bitdefender

Send Function
- for each pair of 2 connected nodes, create a message

My = fmsg(l‘i,xj) € RC V(l,]) € &

mse = fmsg(‘:‘:‘:‘:‘ 3 D:D:‘)
mg1 = fmsg(‘:‘:‘:‘:‘ , O )

My = fmsg(_ ) E‘I)
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GNNs: Message Passing Framework - Send Bitdefender

— fmsg IS @ learnable function (e.g. an MLP)
— its parameters are shared between each pair of nodes

—_—N— C o
Mij = fmsg(®i, ;) €RY V(i,j) € €

mse = fmsg(‘:‘:‘:‘:‘ 3 E‘E)

Same

m3,1 = frnsg(mwm , mmm ) parameters

My = fmSg( oo rrrr)
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GNNs: Message Passing Framework - Aggregation Bitdefender

Aggregation Function
For each node 7, aggregate the incoming messages from all its neighbours.

= fagg({mij‘vj € M})

h3:fagg({ ’ })

29/66



GNNs: Message Passing Framework - Aggregation Bitdefender

Aggregation Function
For each node 7, aggregate the incoming messages from all its neighbours.

= fagg({mij‘vj € M})

~ o ° hs = fayg({ % })
(5 hi = foge({=1)
(5)
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GNNs: Message Passing Framework - Aggregation Bitdefender

— aggregate incoming messages with the function f,4,:
eg. sum, mean, max, min

— it should be invariant to the order of the nodes and
should allow a variable number of messages

=~
(= fagg ({m2]|vj GM}) € RC

h3=fagg({ ’ })

hi = fagy({=1})
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GNNs: Message Passing Framework - Update Bitdefender

Update Function
For each node 4, update its representation using the aggregated message.

T = fupd(xia hz)

I3= fupd( [ = g)

31/66



GNNs: Message Passing Framework - Update Bitdefender

Update Function
For each node 4, update its representation using the aggregated message.

O ® T = fupd(Ti, ftg)

o ° T3= fupd(m:‘:‘ 9
O

Zo= fupd( .

{
[0

[0
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GNNs: Message Passing Framework - Update Bitdefender

— fupa is @ learnable function (e.g. an MLP)
— its parameters are shared between all the nodes

Learnable function

~ C
Tj = fupd(xi,hi) eR

Same
< parameters

Fo= fupa(m=m , =)

Z3= fupd(‘I‘I‘ 1§) \’\
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GNNs - Overview Bitdefender

1. Send 2. Aggregate 3. Update
Mij = finsg(Ti, Tj) Hi = fagg({mij|Vj € Ni}) T = fupa(xi, H;)
® @
i1
@ O
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General GNN framework Bitdefender

fupd{xia fagg{ fmsg(xia$j) Ivj € j\/;} }
Depending on how the 3 functions are instantiated, different architectures could be

obtained:

Convolutional GNNs Attention GNNs Message Passing

fupd(xiﬁ @ {(b(xj)}) fupd(xiv @ {Ck($l,$])¢($j>) fupd(xiv @ {¢($27x])})

VIEN; VieN; VieEN;

34/66



Graph Convolutional Network Bitdefender

yi = fupa(zi, @D { éz;) })

VieN;
® messages depend only on the source nodes

[10] Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. ICLR 35/66
7



Graph Convolutional Network Bitdefender

Yi = f’ll,pd(xiu @ {¢(x])})
VjiEN;
® messages depend only on the source nodes
® aggregation function is implemented as a
sum/mean operation
® aggregation could be normalized according to the

nodes’ degree: —L
deg(i)deg(j)

Matrix form: Y = o(AXW)

[10] Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. ICLR 35/66



Bitdefender

Graph Attention Network

Yi = fupd(xia @ {a(xia$j){ qb(l‘]) })

VieN;
® messages depend only on the source nodes

[11] Vaswani et. al. Attention is all you need. NeurlPS 2017
[12] Velickovié et. al Graph attention networks. ICLR 2018 36/66



Graph Attention Network

Y = fupd(wiv{ @ {a(xiij) gb(:E])})
ViEN;
® messages depend only on the source nodes
® aggregation function is based on attention
mechanism

GAT: a(;, ;) o< ReLU(afz; W1, 2;Wa]T) € R
Self-Attention: o(z;, ;) oc ;Wi (z;Ws)T € R

® the model is able to learn the desired structure

[11] Vaswani et. al. Attention is all you need. NeurlPS 2017
[12] Velickovic et. al Graph attention networks. ICLR 2018

Bitdefender
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Message Passing Neural Network Bitdefender

vi = fupa(zi, @ { @i, z)) })

VieN;
® messages depend on both source and destination

e if edge features are available, the message could
also take them into account

[13] Battaglia et. al. Interaction networks. NeurlPS 2016
[14] Gilmer et. al. Neural message passing for quantum chemistry. ICML 2017 37/66



Message Passing Neural Network Bitdefender

Yi = Fupa(zi, | €D {8(wi,75)})
VieEN;
® messages depend on both source and destination
e if edge features are available, the message could
also take them into account
® aggregation function is implemented as a
sum/mean operation

[13] Battaglia et. al. Interaction networks. NeurlPS 2016

[14] Gilmer et. al. Neural message passing for quantum chemistry. ICML 2017 37/66



Bitdefender

Multiple Layers

e for a more powerful representation, we can stack multiple layers
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Bitdefender

Multiple Layers

e for a more powerful representation, we can stack multiple layers
® each layer increases the receptive field of each node

RECEPTIVE FIELD:
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Bitdefender

Graph Output - Node Level

e predict an output y; from each node

_ ~ K
o R hode Yi = foutput (:Ez) eR
property

e ® the loss function is applied for each node in
the graph

L= Lilyil)

eV

39/66



Bitdefender

Graph Output - Edge Level

® predict an output y;; from each pair of nodes
Yis = foutput(fia fj) € R¥

— edge
property

® the loss function is applied for each edge in
the graph

L= Z E ylja zj

(i,5)e€
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Bitdefender

Graph Output - Graph Level

e predict a single output y for the whole graph
Yy = freadout({f”vz. S V}) S RK

s graph ® f..adout COUld be a simple order-invariant
property aggregator (e.g. sum, mean), or more
complex graph pooling mechanisms

® the loss function is applied for each graph in
the dataset
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Learning
¢ the output of a GNN for a node i is obtained by applying a sequence of

operations on the initial nodes
e all the operations along the sequence should be differentiable

3> fm.‘]

fupd/ %, %
7
@ Z fagy/:e/@
. B/ "®
= 7@
N

/@
!(—-&‘

Bitdefender
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Expressive Power of GNNs Bitdefender

How many different graphs are in this image?
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Expressive Power of GNNs Bitdefender

How many different graphs are in this image?

Are Graph Neural Networks able to identify this?
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Isomorphism test Bitdefender

Two graphs are isomorphic if and only if there exist a mapping from all nodes and all
edges of a graph to the other or, more formally, if and only if there exists a permutation
matrix P such that PA; P’ = A5 and PX; = Xo.

ISOMORPH NON - ISOMORPH
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Isomorphism test Bitdefender

Two graphs are isomorphic if and only if there exist a mapping from all nodes and all
edges of a graph to the other or, more formally, if and only if there exists a permutation
matrix P such that PA P’ = A; and PX; = Xo.

® no polynomial time algorithm is known to determine if two graphs are isomorphic

¢ Weisfieler-Lehman Algorithm (WL) is a powerful algorithm for isomorphism
testing, but it still has cases when it goes wrong

45/66



Weisfieler-Lehman Algorithm Bitdefender

. initi 0 ;0 ;0
Input: initial labels Iy, 15 .1
Output: final labels Ig;, lT.lE

hash hash while not reach a stable state do
o(@e) 5 o oe) — o for each node i do
o (o®) — @ o (00) — @

1 hash(l D ({18 for j € NI}
e(0co0)— ©

o(@) — o

o end

)] t+—t+1;
end

iy o(0) o

o)

46/66



Expressive Power of GNNs Bitdefender

A sufficient number of GNN layers with input features from a countable universe are as
powerful as the 1-WL test if f,p4, fagg @Nd freadout are injective.

T o T o Y 9

(a) Mean and Max both fail (b) Max fails (c) Mean and Max both fail

*[15]: Xu et. al. How powerful are graph neural networks? ICLR 2019 47/66



Expressive Power of GNNs Bitdefender

e Usually there is a trade-off between expressivity and generalization.

® We might want to sacrifice the isomorphism properties to be better aligned to the
desired task (e.g. use min / max in some tasks) or to be able to learn more easily
(e.g use attention).
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GNN Application - Node Level Bitdefender

For several road segments, predict the most likely traffic speed in the next H minutes.

Graph structure:

TR 1N A

AR TS (1 For each time step:
™~
M°u"‘:'m x5 AN - nodes: traffic stations with traffic speed as
= o s Hil { \ features
7 e xvewq a‘gw e - edges: depend on the location of the
N\ campen \ | stations (e.g distance or topology of the
b =X
Sm.u:;:;a‘x{ v N\ StreetS)
) e Us 101 . . . .
Los Gatos N For a time window we will have a series of

graphs, one for each time step.

*[2]: Yu et. al. Spatio-temporal graph convolutional networks: A deep learning framework for traffic
forecasting. IJCAI 2018 49/66



GNN Application - Node Level Bitdefender

For several road segments, predict the most likely traffic speed in the next H minutes.

Time

< | Ve

- | Ve

Graph model:
- spatial processing: for each time step, use a simple
GCN (AXW) to process the nodes
- temporal processing: aggregate temporal

information by using 1D Conv, independently for
each node.

Combine: temporal-spatial-temporal + a Conv layer to reduce the temporal dimension.
From each node predict the speed for the corresponding station.
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GNN Application - Node Level Bitdefender

For several road segments, predict the most likely traffic speed in the next H minutes.

»Y‘\ Why Graph Processing?
\yinw)ﬁ:;:a,ev — The speed in one place is highly influenced by the
\ oy S 118 -’s::r;p;\l( . traffic condition of near by roads segments.
) 460 2R 1 1y - The model could better predict the traffic
'T\.,L _}l \ conditions if we take into account the whole
ol TR roads network.
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Bitdefender

GNN Application - Edge Level

Predict if there are interactions between two drugs when administered simultaneously:
can a change occur in the effects of one drug by the presence of another drug?

B gy Graph structure:
-2 4\ For each time step:
- nodes: the drugs (no features)
g - edges: are drawn between two drugs if we
B have information that those two drugs
B e 1, e 1 S interact with each other

*[5]: Huang et. al. Skipgnn: predicting molecular interactions with skip-graph networks. Sci Rep 10,
21092 (2020) 52/66



GNN Application - Edge Level Bitdefender

Predict if there are interactions between two drugs when administered simultaneously:
can a change occur in the effects of one drug by the presence of another drug?

B Polypharmacy B
Doxycycline, Aﬁ\swde effects /Aswmvasla(m
[P} E Ty E

A Drug @ Protein T4 Gastrointestinal bleed side effect A—@ Drug-protein interaction

5 Node feature vector T2 Bradycardia side effect ©—0 Protein-protein interaction

Graph model:

- GCNs (AXW) are applied to capture the
relations between connected drugs.

- For two target nodes we concatenate their
representation and predict the binary
classification.
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Bitdefender

GNN Application - Edge Level

Predict if there are interactions between two drugs when administered simultaneously:
can a change occur in the effects of one drug by the presence of another drug?

Why Graph Processing?

- Motivated by a medical observation: two drugs could be similar (as side effects)
if they behave in the same way when administered simultaneously with another

drug.
— The GNN is able to encode the already discovered interactions between drugs
and also the behavioral similarity between different drugs.

— The predicted interactions was supported by the medical literature.
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Bitdefender

GNN Application - Graph Level

Classify the action in the video. In general, the actions highly depend on the interactions
happening in the scene.

Graph structure:

The graph structure is not explicitly provided in
this case. One way to build it:

- nodes: objects / entities in the video.

- edges: represent similarity or interactions
between objects.

Folding a paper

*[3]: Wang and Gupta. Videos as space-time region graphs. ECCV 2018 55/66



Bitdefender

GNN Application - Graph Level

Classify the action in the video. In general, the actions highly depend on the interactions
happening in the scene.

Graph structure:

— nodes are extracted using a pre-trained
object detector

- two types of graphs could be built:
similarity graph: edges between all the
nodes, regardless of the time step
spatial graph: for two time steps (¢,¢t + 1)
draw an edge if JoU > threshold. Similar
for (¢,¢ — 1) pairs.
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Bitdefender

GNN Application - Graph Level

Classify the action in the video.

Graph model:

— a GCN (AXW) is applied for each type of
graph structure and the results are fused.

- to obtain a representation at the graph
level (for the whole video) we aggregate all
the nodes in the graph.
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Bitdefender

GNN Application - Graph Level

Classify the action in the video.

mmm\ ‘ Why Graph Processing?
f i.. - ('“
. ‘ — the GCNs is able to capture the correlation

Picking up a shoe

between objects understanding how they interact
NP \‘ - with each other and to “track” the objects across
the temporal dimension

Folding a paper
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GNN Application - Vision Approaches Bitdefender

Other Approaches

® the nodes shouldn’t necessary be associated with objects. There are approaches

that use pixels or patches as nodes and propagate information between them.
RSTG [16], ViT [17]

® we can dynamically predict the salient regions, for cases when we do not have
access to an object detector or we do not know what type of information to store
in each node of the graph. [18]

[16] Nicolicioiu, Duta, Leordeanu. Recurrent space-time graph neural networks NeurlPS 2019
[17] Dosovitskiy et. al. An Image is Worth 16x16 Words: Transformers for Image Recognition ICLR 2021

[18] Duta, Nicolicioiu, and Leordeanu. Dynamic regions graph neural networks for spatio-temporal
reasoning. NeurlPS - ORLR Workshop 2020 59/66



Graph Neural Networks - Resources
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This lecture was influenced by several great resources about Graph Neural Networks.
For a more in depth understanding of Graph Neural Networks and other related areas,
please take a look:

Michael Bronstein, Geometric deep learning, from Euclid to drug design
Petar Velickovié, Theoretical Foundations of Graph Neural Networks
Jure Leskovec, CS224W: Machine Learning with Graphs

William L. Hamilton, Graph Representation Learning Book

Razvan Pascanu, GraphNets - Lecture at TMLSS (Transylvanian Machine Learning
Summer School)

Xavier Bresson, Convolutional Neural Networks on Graphs
Michael Bronstein, Graph Deep Learning Blog
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https://www.youtube.com/watch?v=8IwJtFNXr1U
https://www.youtube.com/watch?v=uF53xsT7mjc
http://web.stanford.edu/class/cs224w/
https://www.cs.mcgill.ca/~wlh/grl_book/
https://www.youtube.com/watch?v=v3jZRkvIOIM
https://towardsdatascience.com/graph-deep-learning/home

Thank You! =

lulia Duta Andrei Nicolicioiu
‘ iduta@bitdefender.com 6 an-icolicioiu@bitdefender.com
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Bitdefender
July 2021 T -
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Fake news detection on social media using geometric deep learning.

Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting.

Videos as space-time region graphs.

Geometric deep learning on graphs and manifolds using mixture model cnns.
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Skipgnn: predicting molecular interactions with skip-graph networks.

Discovering symbolic models from deep learning with inductive biases.

Graph matching networks for learning the similarity of graph structured objects.

Pointer graph networks.
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Graph convolutional neural networks for web-scale recommender systems.

Semi-supervised classification with graph convolutional networks.

Attention is all you need.

Graph attention networks.
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Interaction networks for learning about objects, relations and physics.

Neural message passing for quantum chemistry.

How powerful are graph neural networks?

Recurrent space-time graph neural networks.
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An image is worth 16x16 words: Transformers for image recognition at scale.

Dynamic regions graph neural networks for spatio-temporal reasoning.
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