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Data: Graph Structure

Tasks where we have access or we can
create a graph structure.

A graph G is characterized by:
• a set of nodes
X = {xi|i ∈ 1..N}
• connected by edges
E = {eij |i, j ∈ 1..N}

Each node i is characterized by a set of fea-
tures xi ∈ RD

4/66
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Data: Graph Structure - Nodes
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• all the nodes xi ∈ RD are
stacked into a matrixX ∈ RN×D

• each row corresponds to a node
xi ∈ RD
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Data: Graph Structure - Edges
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• the edges E could be
represented by an adjacency
matrix A ∈ RN×N

• aij 6= 0 if there is an edge
between node i and node j
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Data: Graph Structure - Edges
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 • un-directed graph: adjacency
matrix is symmetric
• directed graph: adjacency

matrix is not symmetric
• aij 6= 0 if there is an edge from j

to i
• a graph could contain self-loops
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GNNs Goal
• Based on the node features (X) and the graph structure

(A), we want to learn a representation of the graph.
• Depending on the task, the representation could be:

1. node level: Y ∈ RN×K

• edge level: Y ∈ RM×K

• graph level: Y ∈ RK

node

 property
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node

 property

edge

 property graph
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Properties: structure

Structure - dependent
the processing should take into account the structure of the graphs

1. the processing should take into account how nodes are connected
• a node should be influenced more by its neighbours

CONNECTIVTY

11/66



Properties: structure

Structure - dependent
the processing should take into account the structure of the graphs

1. the processing should take into account how nodes are connected
2. a node should be influenced more by its neighbours

CONNECTIVTY NEIGHBOURHOOD

11/66



Properties: structure

Structure - dependent
the processing should take into account the structure of the graphs

1. the processing should take into account how nodes are connected
2. a node should be influenced more by its neighbours

CONNECTIVTY NEIGHBOURHOOD

11/66



Properties: permutation invariance and equivariance

There is no canonical order for the nodes of the graph.

Permutation invariance
The global output of the graph processing should be invariant to the order of the nodes.

f(PX,PAP ′) = f(X,A)
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Properties: permutation invariance and equivariance

There is no canonical order for the nodes of the graph.

Permutation equivariance
If we permute the input nodes of the graph, the nodes’ output should be permuted in
the same way.

f(PX,PAP ′) = Pf(X,A)
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Convolutional Network

• takes into account a neighbourhood
• the structure is fixed: a grid for 2D Conv or a

sequence for 1D Conv
• the model is invariant to translations
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Convolutional Network

yi =
∑
j∈Ni

wjxj

For a convolutional network the neighbourhood is
• fixed: for aK ×K convolutional filter we

combine exactlyK2 neighbours
• ordered: we can impose a canonical order among

neighbours (left, right, up, down)
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Convolutional Network

yi =
∑
j∈Ni

wjxj Can we do the same for
graphs?
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Convolutional Network

yi =
∑
j∈Ni

wjxj yi =
∑
j∈Ni

wj xj

• can’t have variable
number of weights
• have to establish an

order
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Convolutional Network

yi =
∑
j∈Ni

wjxj yi =
∑
j∈Ni

w xj • Solution: same w for all
nodes
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Graph Propagation

Simple graph representation (set w = 1): yi = xi +
∑
j∈Ni

xj
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Graph Propagation

Simple graph representation (set w = 1): yi = xi +
∑
j∈Ni

xj
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Graph Propagation

Simple graph propagation (set w = 1): yi = xi +
∑
j∈Ni

xj
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• if applied iteratively, it takes into account the structure
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Simplest Graph Propagation

yi =
∑

j∈Ni
xj can be rewritten in a compact, matrix form as Y = AX
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Simplest Graph Propagation

yi =
∑

j∈Ni
xj Nodes could have high-dimensional representationX ∈ RN×D
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Simplest Graph Propagation

yi = xi +
∑

j∈Ni
xj We should take into account also the current node - self-loops.
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Simplest Graph Propagation

To combine more complex representations:
yi = xi +

∑
j∈Ni

xj → yi = xiW +
∑

j∈Ni
xjW
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Simplest Graph Propagation

To combine more complex representations:
yi = xi +

∑
j∈Ni

xj → yi = xiW +
∑

j∈Ni
xjW
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The operations performed in the graph could be
rewritten as:

Y = AXW

Iteratively, for more layers:

Y = Aσ(AXW1)W2)

Y = Aσ...Aσ(AXW1)W2)..Wn
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GNNs: Message Passing Framework - Send

Send Function
- for each pair of 2 connected nodes, create a message
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mij = fmsg(xi, xj) ∈ RC ∀(i, j) ∈ E
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GNNs: Message Passing Framework - Send

1

4


7


9


8


6


5

3


2

– fmsg is a learnable function (e.g. an MLP)
– its parameters are shared between each pair of nodes

mij =

Learnable funcion︷ ︸︸ ︷
fmsg(xi, xj) ∈ RC ∀(i, j) ∈ E

Same 
parameters


. . .
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GNNs: Message Passing Framework - Aggregation

Aggregation Function
For each node i, aggregate the incoming messages from all its neighbours.
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hi = fagg({mij |∀j ∈ Ni})
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GNNs: Message Passing Framework - Aggregation
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– aggregate incoming messages with the function fagg:
eg. sum, mean, max, min

– it should be invariant to the order of the nodes and
should allow a variable number of messages

hi =

operator︷︸︸︷
fagg ({mij |∀j ∈ Ni}) ∈ RC

. . .
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GNNs: Message Passing Framework - Update

Update Function
For each node i, update its representation using the aggregated message.
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x̃i = fupd(xi, hi)
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GNNs: Message Passing Framework - Update
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– fupd is a learnable function (e.g. an MLP)
– its parameters are shared between all the nodes

x̃i =

Learnable function︷ ︸︸ ︷
fupd(xi, hi) ∈ RC

Same 
parameters
. . .
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GNNs - Overview

1. Send

mij = fmsg(xi, xj)
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Hi = fagg({mij |∀j ∈ Ni})
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x̃i = fupd(xi, Hi)
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General GNN framework

fupd{xi, fagg{ fmsg(xi, xj) |∀j ∈ Ni} }

Depending on how the 3 functions are instantiated, different architectures could be
obtained:

Convolutional GNNs

fupd(xi,
⊕
∀j∈Ni

{φ(xj)})

Attention GNNs

fupd(xi,
⊕
∀j∈Ni

{α(xi, xj)φ(xj))

Message Passing

fupd(xi,
⊕
∀j∈Ni

{φ(xi, xj)})
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Graph Convolutional Network
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yi = fupd(xi,
⊕
∀j∈Ni

{ φ(xj) })

• messages depend only on the source nodes

[10] Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. ICLR
2017 35/66



Graph Convolutional Network
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yi = fupd(xi,
⊕
∀j∈Ni

{φ(xj)})

• messages depend only on the source nodes
• aggregation function is implemented as a

sum/mean operation
• aggregation could be normalized according to the

nodes’ degree: 1√
deg(i)deg(j)

Matrix form: Y = σ(ÃXW )

[10] Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. ICLR
2017 35/66



Graph Attention Network
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yi = fupd(xi,
⊕
∀j∈Ni

{α(xi, xj){ φ(xj) })

• messages depend only on the source nodes

[11] Vaswani et. al. Attention is all you need. NeurIPS 2017
[12] Veličković et. al Graph attention networks. ICLR 2018 36/66



Graph Attention Network
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yi = fupd(xi, {
⊕
∀j∈Ni

{α(xi, xj) φ(xj)})

• messages depend only on the source nodes
• aggregation function is based on attention

mechanism

GAT: α(xi, xj) ∝ ReLU(a[xiW1, xjW2]
T ) ∈ R

Self-Attention: α(xi, xj) ∝ xiW1(xjW2)
T ∈ R

• the model is able to learn the desired structure

[11] Vaswani et. al. Attention is all you need. NeurIPS 2017
[12] Veličković et. al Graph attention networks. ICLR 2018 36/66



Message Passing Neural Network
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yi = fupd(xi,
⊕
∀j∈Ni

{ φ(xi, xj) })

• messages depend on both source and destination
• if edge features are available, the message could

also take them into account

[13] Battaglia et. al. Interaction networks. NeurIPS 2016
[14] Gilmer et. al. Neural message passing for quantum chemistry. ICML 2017 37/66



Message Passing Neural Network
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yi = fupd(xi,
⊕
∀j∈Ni

{φ(xi, xj)})

• messages depend on both source and destination
• if edge features are available, the message could

also take them into account
• aggregation function is implemented as a

sum/mean operation

[13] Battaglia et. al. Interaction networks. NeurIPS 2016
[14] Gilmer et. al. Neural message passing for quantum chemistry. ICML 2017 37/66



Multiple Layers

• for a more powerful representation, we can stack multiple layers

GNN GNN GNN
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Multiple Layers

• for a more powerful representation, we can stack multiple layers
• each layer increases the receptive field of each node

GNN GNN GNN

RECEPTIVE FIELD:
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Graph Output - Node Level

node

 property

• predict an output yi from each node
yi = foutput(x̃i) ∈ RK

• the loss function is applied for each node in
the graph

L =
∑
i∈V
Li(yi, li)
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Graph Output - Edge Level

edge

 property

• predict an output yij from each pair of nodes
yij = foutput(x̃i, x̃j) ∈ RK

• the loss function is applied for each edge in
the graph

L =
∑

(i,j)∈E

Li(yij , lij)
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Graph Output - Graph Level

graph

 property

• predict a single output y for the whole graph
y = freadout({x̃i|∀i ∈ V}) ∈ RK

• freadout could be a simple order-invariant
aggregator (e.g. sum, mean), or more
complex graph pooling mechanisms

• the loss function is applied for each graph in
the dataset

L = Li(y, l)
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Learning

• the output of a GNN for a node i is obtained by applying a sequence of
operations on the initial nodes
• all the operations along the sequence should be differentiable
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Expressive Power of GNNs

How many different graphs are in this image?
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Expressive Power of GNNs

How many different graphs are in this image?

Are Graph Neural Networks able to identify this?

43/66



Isomorphism test

Graph isomorphism
Two graphs are isomorphic if and only if there exist a mapping from all nodes and all
edges of a graph to the other or, more formally, if and only if there exists a permutation
matrix P such that PA1P

′ = A2 and PX1 = X2.

ISOMORPH NON - ISOMORPH

44/66



Isomorphism test

Graph isomorphism
Two graphs are isomorphic if and only if there exist a mapping from all nodes and all
edges of a graph to the other or, more formally, if and only if there exists a permutation
matrix P such that PA1P

′ = A2 and PX1 = X2.

• no polynomial time algorithm is known to determine if two graphs are isomorphic
• Weisfieler-Lehman Algorithm (WL) is a powerful algorithm for isomorphism

testing, but it still has cases when it goes wrong

45/66



Weisfieler-Lehman Algorithm
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Expressive Power of GNNs

Graphs expressive power *

A sufficient number of GNN layers with input features from a countable universe are as
powerful as the 1-WL test if fupd, fagg and freadout are injective.

*[15]: Xu et. al. How powerful are graph neural networks? ICLR 2019 47/66



Expressive Power of GNNs

• Usually there is a trade-off between expressivity and generalization.
• We might want to sacrifice the isomorphism properties to be better aligned to the

desired task (e.g. use min / max in some tasks) or to be able to learn more easily
(e.g use attention).
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GNN Application - Node Level

Traffic forecasting *

For several road segments, predict the most likely traffic speed in the next H minutes.

Graph structure:

For each time step:
– nodes: traffic stations with traffic speed as

features
– edges: depend on the location of the

stations (e.g distance or topology of the
streets)

For a time window we will have a series of
graphs, one for each time step.

*[2]: Yu et. al. Spatio-temporal graph convolutional networks: A deep learning framework for traffic
forecasting. IJCAI 2018 49/66



GNN Application - Node Level

Traffic forecasting
For several road segments, predict the most likely traffic speed in the next H minutes.

Graph model:
– spatial processing: for each time step, use a simple

GCN (AXW ) to process the nodes
– temporal processing: aggregate temporal

information by using 1D Conv, independently for
each node.

Combine: temporal-spatial-temporal + a Conv layer to reduce the temporal dimension.
From each node predict the speed for the corresponding station.
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GNN Application - Node Level

Traffic forecasting
For several road segments, predict the most likely traffic speed in the next H minutes.

Why Graph Processing?

– The speed in one place is highly influenced by the
traffic condition of near by roads segments.

– The model could better predict the traffic
conditions if we take into account the whole
roads network.
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GNN Application - Edge Level

Drug-Drug Interactions *

Predict if there are interactions between two drugs when administered simultaneously:
can a change occur in the effects of one drug by the presence of another drug?

Graph structure:

For each time step:
– nodes: the drugs (no features)
– edges: are drawn between two drugs if we

have information that those two drugs
interact with each other

*[5]: Huang et. al. Skipgnn: predicting molecular interactions with skip-graph networks. Sci Rep 10,
21092 (2020) 52/66



GNN Application - Edge Level

Drug-Drug Interactions
Predict if there are interactions between two drugs when administered simultaneously:
can a change occur in the effects of one drug by the presence of another drug?

Graph model:
– GCNs (AXW ) are applied to capture the

relations between connected drugs.
– For two target nodes we concatenate their

representation and predict the binary
classification.
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GNN Application - Edge Level

Drug-Drug Interactions
Predict if there are interactions between two drugs when administered simultaneously:
can a change occur in the effects of one drug by the presence of another drug?

Why Graph Processing?

– Motivated by a medical observation: two drugs could be similar (as side effects)
if they behave in the same way when administered simultaneously with another
drug.

– The GNN is able to encode the already discovered interactions between drugs
and also the behavioral similarity between different drugs.

– The predicted interactions was supported by the medical literature.
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GNN Application - Graph Level

Action recognition *

Classify the action in the video. In general, the actions highly depend on the interactions
happening in the scene.

Graph structure:

The graph structure is not explicitly provided in
this case. One way to build it:
– nodes: objects / entities in the video.
– edges: represent similarity or interactions

between objects.

*[3]: Wang and Gupta. Videos as space-time region graphs. ECCV 2018 55/66



GNN Application - Graph Level

Action recognition
Classify the action in the video. In general, the actions highly depend on the interactions
happening in the scene.

Graph structure:

– nodes are extracted using a pre-trained
object detector

– two types of graphs could be built:
1. similarity graph: edges between all the

nodes, regardless of the time step
2. spatial graph: for two time steps (t, t+ 1)

draw an edge if IoU > threshold. Similar
for (t, t− 1) pairs.
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GNN Application - Graph Level

Action recognition
Classify the action in the video.

Graph model:
– a GCN (AXW) is applied for each type of

graph structure and the results are fused.
– to obtain a representation at the graph

level (for the whole video) we aggregate all
the nodes in the graph.
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GNN Application - Graph Level

Action recognition
Classify the action in the video.

Why Graph Processing?

– the GCNs is able to capture the correlation
between objects understanding how they interact
with each other and to “track” the objects across
the temporal dimension
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GNN Application - Vision Approaches

Other Approaches
• the nodes shouldn’t necessary be associated with objects. There are approaches

that use pixels or patches as nodes and propagate information between them.
RSTG [16], ViT [17]

• we can dynamically predict the salient regions, for cases when we do not have
access to an object detector or we do not know what type of information to store
in each node of the graph. [18]

[16] Nicolicioiu, Duta, Leordeanu. Recurrent space-time graph neural networks NeurIPS 2019
[17] Dosovitskiy et. al. An Image is Worth 16x16 Words: Transformers for Image Recognition ICLR 2021
[18] Duta, Nicolicioiu, and Leordeanu. Dynamic regions graph neural networks for spatio-temporal

reasoning. NeurIPS - ORLR Workshop 2020 59/66



Graph Neural Networks - Resources

This lecture was influenced by several great resources about Graph Neural Networks.
For a more in depth understanding of Graph Neural Networks and other related areas,
please take a look:
• Michael Bronstein, Geometric deep learning, from Euclid to drug design Link

• Petar Veličković, Theoretical Foundations of Graph Neural Networks Link

• Jure Leskovec, CS224W: Machine Learning with Graphs Link

• William L. Hamilton, Graph Representation Learning Book Link

• Razvan Pascanu, GraphNets - Lecture at TMLSS (Transylvanian Machine Learning
Summer School)
• Xavier Bresson, Convolutional Neural Networks on Graphs Link

• Michael Bronstein, Graph Deep Learning Blog Link
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https://www.youtube.com/watch?v=8IwJtFNXr1U
https://www.youtube.com/watch?v=uF53xsT7mjc
http://web.stanford.edu/class/cs224w/
https://www.cs.mcgill.ca/~wlh/grl_book/
https://www.youtube.com/watch?v=v3jZRkvIOIM
https://towardsdatascience.com/graph-deep-learning/home
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