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Abstract

Graph Neural Networks are perfectly suited to capture la-
tent interactions occurring in the spatio-temporal domain. But
when an explicit structure is not available, as in the visual do-
main, it is not obvious what atomic elements should be rep-
resented as nodes. They should depend on the context and
the kinds of relations that we are interested in. We are fo-
cusing on modeling relations between instances by propos-
ing a method that takes advantage of the locality assumption
to create nodes that are clearly localised in space. Current
works are using external object detectors or fixed regions to
extract features corresponding to graph nodes, while we pro-
pose a module for generating the regions associated with each
node dynamically, without explicit object-level supervision.
Conditioned on the input, for each node we predict the lo-
cation and size of a region and use them to pool node fea-
tures using a differentiable mechanism. Constructing these
localised, adaptive nodes makes our model biased towards
object-centric representations and we show that it improves
the modeling of visual interactions. By relying on a few lo-
calized nodes, our method learns to focus on salient regions
leading to a more explainable model. Our model achieves su-
perior results on video classification tasks involving instance
interactions.

1 Introduction
Spatio-temporal data, and videos in particular, are char-
acterised by an abundance of interactions between con-
cepts (Chen et al. 2019) and instances (Wang and Gupta
2018). The general meaning of a class is given by an ab-
stract, semantic concept, which can be particularised into
specific instances, each with its own identity. The relations
between the concepts define a context and clarify the seman-
tics, while different spatio-temporal environments, contain-
ing the same set of concepts, are distinguished by their spe-
cific composition of instances.

For proper modeling, both types of interactions are
needed. In classic convolutional networks their ratio is im-
plicitly defined, while graph neural networks offer more
flexibility in choosing inductive biases, favouring one or the
other. Some current works applying graph networks in visual
domain lean towards relating concepts in a semantic space
(Chen et al. 2019; Liang et al. 2018) while others focus on

∗Equal contribution.

Figure 1: Multiple kinds of latent visual interactions could
be captured by graph models with nodes created in different
ways: a) fixed spatio-temporal regions b) bounding-boxes
given by object detectors c) semantic maps capturing mul-
tiple concepts d) local regions capturing distinct instances.
This work aims for the last approach by proposing localised
graph nodes, oriented towards capturing instances.

the interactions between entities given by object detectors
(Wang and Gupta 2018; Sun et al. 2018). In a similar vein as
the second approach, we propose a Graph Neural Network
method for visual understanding, focusing on the creation
of instance-oriented nodes relating entities in the scene. By
entity, we denote a localised visual unit that represents an
entire or a part of an instance.

By the locality assumption, local correlations are stronger
than distant ones, thus we create graph nodes features by
pooling from clearly defined regions in the input. The pool-
ing is done in a differentiable way w.r.t. regions’ location
and size such that we could predict them dynamically, con-
ditioned on the input, in order to better adapt to the current
scene. The process does not involve objects identified by ex-
ternal detectors and does not use any kind of object-level
supervision, only relying on video classification signal.

Object-centric representations improve the learning capa-
bilities of visual models (Locatello et al. 2020) and we argue
that our instance-oriented nodes produce such representa-
tions for the following reasons. First, our model extracts lo-
cal information that better correlates with instances. Second,
graph methods work best on top of well-defined structures
where nodes have a clear meaning on their own (Battaglia
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et al. 2018), thus the learning process should lead to node
representations that best fulfil these requirements. We also
validate experimentally that the predicted kernels correlate
with object locations.

Our methods learns to adapt the level of granularity of the
nodes’ regions according to the current task, to cover well
the salient entities in the scene. This is in contrast to the
approaches based on object detection that are restricted by a
set of pre-defined object annotations. Focusing on the nodes’
location, our method Dynamic Regions Graph Neural Net-
works (DyReG) is well suited for tasks that rely heavily on
the position of different entities, such as action recognition
or human-object interaction.

Our main contributions are summarised as follow:
1. We design a novel method to create localised graph

nodes, dynamically predicted from the input, that are bi-
ased towards object-centric representations.

2. Our model can discover salient regions, suitable for rela-
tional processing, without object-level supervision.

3. Localising the nodes gives a form of hard attention that
makes the model more explainable and we quantitatively
show that they correlate with objects locations.

4. We obtain state-of-the-art results on a video classification
task where instances play a key role.

2 Related work
Graph Neural Networks Graph neural networks have
been recently used in many domains where the data has a
non-uniform structure (Bruna et al. 2013; Battaglia et al.
2016; Gilmer et al. 2017; Li et al. 2018). In vision tasks,
it is important to model the relations between different en-
tities appearing in the scene (Baradel et al. 2018; Qi et al.
2018) and Graph Neural Networks have strong inductive bi-
ases towards relations (Battaglia et al. 2018), thus they are
perfectly suited for modeling interactions between visual in-
stances. Since an explicit structure is not available in the
video, it is of critical importance to establish what atomic
elements should be represented as graph nodes. We classify
recent approaches taking into account how they create the
nodes and what type of information each node represents.

Regarding how the nodes are created, recent literature
generally follows two directions. In the first one, the graph
nodes represent convolutional points or fixed regions (San-
toro et al. 2017; Wang et al. 2018; Chen et al. 2018b; Gao,
Zhang, and Xu 2019), while in the second one nodes are
associated with objects given by pre-trained external detec-
tors (Wang and Gupta 2018; Herzig et al. 2019; Zhang et al.
2019; Materzynska et al. 2020). Our work draws from both
directions, covering dynamically predicted regions without
object-level supervision.

The idea of forming relations from visual elements given
by convolutional features appears in (Santoro et al. 2017)
where they process pairs of features from every loca-
tion, to capture distant interactions in the scene. The Non-
Local (Wang et al. 2018) method creates graph’s nodes
from every point in the convolutional features and uses
self-attention (Vaswani et al. 2017) mechanism to achieve

long-range connections. Following, (Nicolicioiu, Duta, and
Leordeanu 2019) extract nodes from larger fixed regions at
different scales and processes them recurrently.

Instances from the visual scene, each having their own
spatial identity such as objects, are involved in complex in-
teractions that are modeled by several works using Graph
Neural Networks. In (Wang and Gupta 2018), information
between object features is propagated over two different
graph structures, one given by location and one given by
similarity between nodes. Other works combine both worlds
by sending messages between nodes corresponding to points
and object features (Sun et al. 2018; Girdhar et al. 2019)
or by introducing propagation over class or concept embed-
dings (Chen et al. 2018a; Mavroudi, Béjar, and Vidal 2020).

Regarding the kind of information represented by each
node, we could distinguish two types of interactions in the
visual world, one relating high-level concepts, living in a
purely semantical space, and one between instances associ-
ated with specific spatio-temporal locations. For example, as
illustrated in Figure 1, all the boats in an image are purely
semantically associated with the river, while a specific boat
relates to its rowers by an instance interaction. This is similar
to the usage of the terms semantic and instance segmenta-
tion. Depending on the task, methods are designed to model
them in different proportions. The approaches of (Chen et al.
2019; Li and Gupta 2018; Kipf, van der Pol, and Welling
2020; Locatello et al. 2020) capture the purely semantic in-
teractions by reasoning over global graph nodes, each one
receiving information from all the points in convolutional
input, regardless of spatio-temporal position. In (Chen et al.
2019) the nodes assignments are predicted from the input,
while in (Li and Gupta 2018) the associations between in-
put and nodes are made by a soft clusterization. The work
of (Locatello et al. 2020) is able to discover different rep-
resentation groups by using an iterative clusterization based
on self-attention similarity. In (Liang et al. 2018) the seman-
tic features of global nodes are also augmented with concept
information given by class embeddings and define the con-
nectivity by a knowledge graph structure.

The downside of these approaches is that individual in-
stances, especially those belonging to the same semantic
class, are not distinguished in the graph processing. This
information is essential in tasks such as capturing human-
object interactions, instance segmentation or tracking. Al-
ternatively, we associate nodes with features from specific
regions, predicted from the input, giving our model bias for
modeling instance interactions.

Concurrently, the method (Rahaman et al. 2020) uses
multiple position-aware nodes that take into account the spa-
tial structure. This makes their method more suitable for
capturing instances, but the nodes have associated a static
learned location where each one is biased towards a spe-
cific position regardless of the input. On the other hand, we
dynamically assign a location for each node, based on the
input, making the method more flexible to generalise to new
environments.

Similar relations are captured by methods involving fea-
tures of detected objects as node features. However, these
models not only depend on the performance of an external



Figure 2: (Left) Architecture of our DyReG model that extracts localised node representations, useful for relational processing.
For each node i, from the feature volume Xt, we extract parameters oi denoting the location and size of a region. They define
a kernel Ki, used to extract the localised features vi from the corresponding region of Xt. We process the nodes with a spatio-
temporal GNN and project each node features v̂i into its initial location, according to the same kernel Ki. (Right) B) Node
Region Generation: To extract regions params oi we use positional aware functions f and {gi}. f extracts latent representation
shared between nodes, while each gi has different parameters for each node i. C) Node Features Extraction: A kernel, created
from each set of params oi, is used in a differentiable pooling w.r.t. oi that allows the optimisation of these parameters.

object detector but are also unable to adapt to the require-
ments of the current task, being limited to the set of pre-
defined object annotations. Different from them, our pro-
posed module predicts salient regions conditioned on the in-
put and optimise these predictions for the current task, us-
ing only the video classification signal. This is related to
the trend in supervised object detection where external ob-
ject proposals have been replaced by self-predicted locations
(Ren et al. 2015) while also pooling using bilinear interpo-
lation (Dai, He, and Sun 2016; He et al. 2017).

These two types of interactions are captured in the dual
attention model (Fu et al. 2019) by using spatial attention for
instance relations and channel attention for semantic ones.

Dynamic Networks Several works use second-order com-
putations by dynamically predicting different parts of their
model from the input, instead of directly optimising param-
eters. The method (Jia et al. 2016), replaces the learnable
convolutional parameters with weights predicted from the
input using a distinct convolution, resulting in a dynamically
generated filter. While in standard convolutions the kernel is
multiplied with features from fixed points, deformable con-
volutions (Dai et al. 2017; Zhu et al. 2019) predict an offset
for each position based on the input. Similar, (Zhang et al.
2020b) use the same idea of predicting offsets but in a graph
network formulation. As in Non-Local, their nodes corre-
spond to all the convolutional feature points but they use the
offset to control the connectivity of each node. They take
advantage of sparse, non-local connections between points,
while we focus on creating instance-oriented nodes that have
a more clear identity. This kind of processing, involving a
small set of powerful modules, is also highlighted in works
like (Goyal et al. 2019) and (Rahaman et al. 2020).

Activity Recognition Video classification has been influ-
enced by methods designed for 2D images (Yue-Hei Ng

et al. 2015; Donahue et al. 2015; Ma et al. 2018; Zhou et al.
2018). More powerful 3D convolutional networks, inflated
from their 2D counterpart, have been later proposed (Car-
reira and Zisserman 2017), while other methods factorise
the 3D convolutions (Xie et al. 2018; Tran et al. 2018, 2019)
bringing both computational speed and accuracy. Methods
like TSM (Lin, Gan, and Han 2019) and (Fan et al. 2020)
showed that a simple shift in the convolutional features re-
sults in improved accuracy at low computational budget.

3 Dynamic Regions GNNs
We investigate how we can create node representations that
are useful for modeling visual interaction using Graph Neu-
ral Networks. While there are many formulations of graph
processing in the visual domain, little attention is given in
the literature to the way the nodes are extracted from convo-
lutional features.

Our method can distinguish and relate different instances
existing in the visual scene, as each node is a high-level
module that represents an entity, having a definite spatio-
temporal location. To adapt to the approached task and the
current visual scene, we dynamically assign each node to a
location, based on the input. Since each node strongly relies
on the predicted position this could lead to an object-centric
representation of an entity.

The main architecture of our DyReG model is illus-
trated in Figure 2. From a spatio-temporal feature volume
X ∈ RT×H×W×C , we use a differentiable pooling oper-
ation to create graph nodes, each one extracted from a spe-
cific region of the video. At each time step t, we estimate N
regions, defined by a kernel function K with 4 parameters
that corresponds to its location and size. The nodes contain-
ing features from these predicted locations are processed by
a graph neural network to capture interactions across space
and time. The resulting node features, enriched by the rela-



tional processing, are then projected to their initial position
according to the kernel function. The module can be inserted
at any intermediate level in a standard convolutional model.
In the following sections, we explain in more detail each part
of our model.

3.1 Node Region Generation
Our method processes a few object-centric nodes so it is cru-
cial to assign them to the salient regions. To accomplish this,
we propose a global processing (as illustrated in Figure 2 B)
that aggregates the entire input features to produce regions
defined by four parameters for each node: two for determin-
ing the location of the center (∆x,∆y) and two to control
the width and height (w, h).

To generate N salient regions, we process the input Xt

using position-aware functions f and {gi}i∈1,N that retain
spatial information. The function f is a convolutional net-
work that highlights the important regions from the input.

Mt = f(Xt) ∈ RH
′×W ′×C′

(1)

For each node i, we generate a latent representation of
its associated region using the {gi} functions. Each gi has
the same architecture, but different parameters for each node
and could be instantiated as a fully connected network or as
global pooling enriched with spatial positional information.

m̂i,t = gi(Mt) ∈ RC
′
,∀i ∈ 1, N (2)

We process each of the N latent representations indepen-
dently, with a GRU (Cho et al. 2014) recurrent network, to
achieve consistency across time. At each time step, the final
parameters are obtained by a linear projection, modulated by
a set of parameters α used to control the initialisation.

zi,t = GRU(zi,t−1, m̂i,t) ∈ RC
′
,∀i ∈ 1, N (3)

oi,t = (∆xi,t,∆yi,t, wi,t, hi,t) = α�Wzi,t ∈ R4 (4)

3.2 Node Features Extraction
The following operations are applied independently at each
time step thus, in the current subsection, we ignore the time
index for clarity. We extract the features corresponding to
each region i using a differentiable pooling w.r.t. the pre-
dicted region parameters oi. All the spatial locations p ∈ R2

are interpolated according to the kernel function K(i)(p) as
presented in Figure 2 C.

We present the operation for a single axis since the kernel
is separable, acting in the same way on both axes:

K(i)(px, py) = k(i)x (px)k(i)y (py) ∈ R (5)

We define the center of the estimated region ci,x + ∆xi,
where ci,x is a fixed reference point for node i. The values
of the kernel decrease with the distance to the center and is
non-zero up to a maximal distance of wi, where wi and ∆xi
are the predicted parameters from Eq. 4.

k(i)x (px) = max(0, wi − d(ci,x + ∆xi, px)) (6)

For each time step t, the features for node i are obtained
by interpolating using the kernel function all the points in the
inputXt. By modifying (∆xi,∆yi) the network controls the
location of the regions, while (hi, wi) parameters indicate
their size.

vi,t =

W∑
px=1

H∑
py=1

K(i)(px, py)xt,px,py ∈ RC (7)

The position of the region associated with each node
should be taken into account. It helps the relational process-
ing by providing an identity for the node and is also useful
in tasks that requires positional information. We achieve this
by computing a positional embedding for each node i using
a linear projection of the kernel Ki into the same space as
the feature vector vi and summing them.

We note that setting wi = 1 leads to the standard bilinear
interpolation kernel, but optimising it allows the network to
learn the size of the regions dynamically adapted for each
node. Interpolating from larger regions also results in a more
stable optimisation of the predicted region parameters. In the
Appendix, we present some experiments regarding the re-
gions’ size and analyse how different non-linear functions
over the distance determine their shape.

3.3 Graph Processing
For processing the node features, different Graph Neural
Networks could be used. Generally, they follow a frame-
work (Gilmer et al. 2017; Battaglia et al. 2018) of sending
messages between connected nodes, aggregating them us-
ing simple permutation invariant functions (Xu et al. 2019)
or attention mechanisms (Velikovi et al. 2018) and updating
them to form the final nodes representations.

The specific message-passing mechanism is not the fo-
cus of the current work, thus we follow a general formu-
lation similar to (Nicolicioiu, Duta, and Leordeanu 2019)
for spatio-temporal graph processing, using two different
stages: one happening between all the nodes at a single time
step and the other updating each node across time. For each
time step t, we send messages between each pair of two
nodes, computed as an MLP and aggregates them using a
dot product attention coefficient a(vi, vj) ∈ R.

vi,t =

N∑
j=1

a(vj,t,vi,t)MLP(vj,t,vi,t) ∈ RC (8)

We incorporate temporal information through a recurrent
function across time, applied independently for each node.

v̂i,t+1 = GRU(v̂i,t,vi,t) ∈ RC (9)

The GRU output represents the updated nodes’ features
and the two steps are repeated several times.

3.4 Graph Re-Mapping
The graph propagation produces higher-level information,
by modeling the global interactions between position-aware
nodes. We map the node features back into the same space as



the inputXt, in order to further benefit from complementary
local processing, such as convolutional layers. The resulting
features of each node are sent to all locations in the input ac-
cording to the weights used in the initial pooling from Sec-
tion 3.2, distributing their features into a local region defined
by the initial kernel K(i):

ypx,py,t =

N∑
i=1

K(i)
t (px, py)v̂i,t ∈ RC (10)

The output y could be used for the final prediction or
could be further processed with any spatio-temporal model.

4 Experiments
We test our model on two video classification datasets. For
the first one, we use a variant of the SyncMNIST (Nicoli-
cioiu, Duta, and Leordeanu 2019) dataset that is challeng-
ing and requires spatio-temporal reasoning, while allow-
ing fast experimentation. We then evaluate on Something-
Something-V2 (Goyal et al. 2017), a real-world dataset that
involves complex human-object interactions.

4.1 Synthetic Experiments
SyncMNIST is a synthetic dataset involving digits that move
on a black background, some in a random manner, while
some move synchronously. The task is to identify the digits
that move in the same way. We use a variant of the dataset,
that we call MultiSyncMNIST, consisting in scenes with 5
moving digits where a subset of them moves synchronously.
A video can contain multiple instances of the same class and
the goal is to find the smallest and the largest digit class that
move in the same way, resulting in a video classification task
with 56 classes. The dataset contains 600k training videos
and 10k validation videos with 10 frames each.

The task is challenging because it requires to distinguish
between multiple instances and to identify the subset that
is moving synchronously. This entails modeling complex
instance-based relationships.

We use this dataset to identify key challenges in video-
processing and show how our model is able to address them.

Baselines We start with a 2D ResNet-12 (He et al. 2016)
baseline, also used as a backbone for our method, applied
independently at each time step, that is not able to solve the
task and only takes advantage of the dataset biases. In Ta-
ble 1 we show an oracle model 2D Oracle that predicts the
smallest and largest digits in the video, ignoring the move-
ment, and observe that the 2D model achieves similar per-
formance, hinting that it only learns to recognise the digits.
It has been shown (Wang et al. 2018) that there is a need to
model spatio-temporal relations in video and graph models
are well suited for this task (Wang and Gupta 2018). Thus
we introduce a series of graph models, that uses the features
from the second stage of the ResNet-12 as input for a graph
module and processed them as explained in Section 3.3.

We argue for two key ideas, first that graph methods
should require nodes that are localised in space, biased to-
ward instances and second that nodes should dynamically

Figure 3: Visualisation of the kernel functions associated to
each node, as learned by different model variants a) Static
model, ignoring the input, learns a regular grid such that it
covers the expected digits’ positions over the whole dataset;
b) Constant-Time model predicts a single set of regions cov-
ering the zones of movement in the current video; c-d) model
generally follow the digits locations at each time steps while
our Full model also adapts the regions’ size.

adapt according to the input. In the following two subsec-
tions, we experimentally validate each of them.

Dynamic Nodes Importance We investigate different
types of localised nodes, each adapting to the input to a vary-
ing degree, and show the benefits of our design choices. We
keep the same graph processing and constrain the node re-
gions in different ways.

We start by having node features extracted from regions
arranged on a grid, with a fix location and size, similar to the
approach used in (Nicolicioiu, Duta, and Leordeanu 2019).
We refer to this experiment as Grid in Table 1 and Table 2
and observe that this model is capable of spatio-temporal
reasoning, but achieves poorer results than when allowing
the regions to move.

In order to investigate the importance of dynamic regions,
we construct a model (referred to as Static) with node zones
that are optimised from the dataset but do not take into con-
sideration the current input. This is achieved by replacing
each zi features from Eq. 4 with a set of learnable parame-
ters for all time steps, thus ignoring the input.

We also validate that the regions should be adapted
to each time step, by constructing a model, denoted as
Constant-Time, where the nodes are dynamic, but receive the
same regions in all time steps. This is done by applying net-
work f in Eq. 1 on the input features temporally aggregated
by mean pooling and omitting the GRU for the prediction of
region parameters (since it receives a single time step).

The regions used in our DyReG model are defined by
location and size, and we can either pre-determine a fixed
size for all the regions, based on existing biases in data,
(Position-Only model) or directly predict it from the input
as in our complete model (Full model).

We observe from the previous experiments, summarised
in Table 1, that the fixed region approach achieves the worst



Model Optimise Time Dynamic Dynamic Accuracy
Position Variant Position Size

Grid 78.85
Static X 81.48
Ct-time X X 86.77
Pos-Only X X X 93.41
Full X X X X 95.09

Table 1: Ablation study on the MultiSyncMNIST dataset showing the im-
portance of dynamically adapting node regions to the visual content. All
the models use the same graph processing and constrain the node gener-
ation in different ways. We observe that it is crucial to have regions that
depend on the input, varying at each time step, while adapting their size.

Model Parameters (M) Accuracy

2D Oracle - 54.40

ResNet-12 2.790 52.29
Grid 2.824 78.85
Semantic 2.853 82.41
DyReG-Lite 2.833 91.43
DyReG 3.081 95.09

Table 2: Results of our main model and differ-
ent baselines on MultiSyncMNIST. We show
that the instance-oriented node regions of our
DyReG model are better suited than semantic
nodes’ maps obtained by the Semantic model
for the current task.

results, slightly improving when the regions are allowed to
change according to the learned statistics of the dataset in
the Static model. Adapting to the input is shown to be bene-
ficial, the performance improving even when the regions are
invariant in time and achieving the maximum performance
when both the location and the size of the regions are dy-
namically predicted from the input.

In Figure 3 we show examples of the kernels obtained for
each of these models. We observe that the Static model’s ker-
nels are learned to be arranged uniformly on a grid, to cover
all possible movements in the scene, while the Constant-
time model’s kernels are adapted for each video such that
they cover the main area where the digits move in the cur-
rent video. The Full model starts with bigger regions but
learns to reduce their size and we observe that they closely
follow the movement of the digits.

Localised Node Importance We argue that nodes should
pool information from different locations according to the
input, such that the extracted features correspond to mean-
ingful entities. Depending on the goal, we could balance be-
tween semantic nodes globally extracted from all spatial po-
sitions or instance nodes that are obtained from local regions
biased towards individual entities.

In Semantic model we create nodes similar to (Chen et al.
2019) and (Liang et al. 2018). For each node, we directly
predict from the features at each spatial position p a weight-
ing scalar. Node features are computed by global average
pooling according to these coefficients. This is equivalent
to predicting each position K(i)

t (p) directly from the corre-
sponding position in the input Xt,p. Thus each node extracts
features from all the spatial locations and could represent a
semantic concept. A disadvantage of this approach is that it
does not distinguish between positions with the same fea-
tures, making it harder to reason about different instances.

In order to model the instances presented in the video, we
leverage our full DyReG model explained in Section 3. We
experiment with two variants of the gi functions to obtain
a lighter model (DyReG-Lite) comparable in terms of the
number of parameters (as seen in Table 2 ) with the previous
one, and a bigger, more accurate one (DyReG). Both models
obtain nodes that are localised in space and we observe that

Model BB #F Top 1 Top 5

TRG R50 16 59.8 87.4
GST R50 16 62.6 87.9
v-DropPath DNet121 16 62.9 88.0
TSM R50 16 63.4 88.5
SmallBig R50 16 63.8 88.9
STM R50 16 64.2 89.8
DyReG - r4 R50 16 64.3 88.9
DyReG - r3-4-5 R50 16 64.8 89.4

Table 3: State-of-the-art models on the validation set of
Something-Something-v2. We place one instance of DyReG
model in the res4 stage of the backbone or three instances
placed at res3, res4 and res5 stages. We achieve improve-
ments over the TSM backbone and obtain superior results.

both of them improve the previous approach that uses purely
semantical nodes. More details about the implementation of
all the presented models are found in the Appendix.

Table 2 presents the performance of the previously ex-
plained models and shows that models like Semantic or
DyReG, with either type of adaptive nodes, improves upon
a fixed node approach. For the current task, that involves
reasoning about the position of entities in a scene, we ob-
serve that our instance-based model is more appropriate than
purely semantical processing.

Implementation details All models share the ResNet-12
backbone with 3 stages, where the graph receives the fea-
tures from the second stage and sends its output to the third
stage. We use a number ofN = 9 graph nodes and repeat the
graph propagation for three iterations. In the main dynamic
model f from Eq. 1 is implemented as a small convolutional
network while g is a fully connected layer. For the lighter
model that implements g as a global pooling enriched with
spatial positional information, we refer to the Appendix. The
graph offsets are initialized such that all the nodes’ regions
start in the center of the frame by properly setting α in Eq. 4.
In all experiments, we use SGD optimizer with learning rate
0.001 and momentum 0.9, trained on a single GPU.



Figure 4: IoU and mean L2 distance between DyReG re-
gions and the GT boxes on validation set of Something-
Something-v2. During training, it improves the scores, hint-
ing that the model learns object-centric representations.

4.2 Human-Object Interactions Experiments
We experiment on a real-world dataset, Something-
Something-V2 (Goyal et al. 2017) that involves classify-
ing complex scene involving human-object interactions. It
is challenging because solving it requires both temporal rea-
soning and modeling spatial relations between objects in the
environment. It consists of 169K training videos and 25K
validation videos, having 174 classes.

We use TSM-ResNet-50 (Lin, Gan, and Han 2019) as
our backbone and add instances of our module at multiple
stages. We noticed that models using multiple graphs have
problems learning to adapt the regions from certain layers.
We fix this by training models containing a single graph at
each single considered stage, as the optimisation process is
smoother for a single module, and distill their learned off-
sets into the bigger model for a small number of epochs to
kick-start the optimisation process. This involves supervis-
ing the nodes’ regions from the single graph models for the
first 10% of the training iterations then continue the learning
process with only the video classification signal. Distilling
the model for the first 10% or 40% training iterations arrives
at similar results, hinting that it is useful only for fixing the
optimisation problems in the beginning of training.

In Table 3 we compare to recent methods from the liter-
ature such as TRG (Zhang et al. 2020a), v-DropPath (Zhou
et al. 2020), GTS (Luo and Yuille 2019), TSM, SmallBig (Li
et al. 2020), STM (Jiang et al. 2019). Our method improves
over the TSM backbone by 1.4% in Top-1 accuracy and
achieves superior results compared to all the other methods.

Object-centric representations The localised nodes
make our model capable of discovering salient regions,
leading to object-centric node representations. The nodes
represent the core processing units and their localisation
enforces a clear decision on what specific regions to focus
on while completely ignoring the rest, as a form of hard
attention. By inspecting their predicted kernels we have a
better understanding of the elements influencing the model
predictions, thus making the method more explainable.
Visualisations of our nodes’ regions (Figure 5) reveal that
generally, they cover the objects in the scene.

We quantify this by measuring the mean Intersection over
Union (IoU) and the mean L2 distance between the pre-
dicted regions and ground truth objects given by (Materzyn-
ska et al. 2020). The metrics are completely defined in the

Figure 5: Visualisation of kernel functions learned by our
DyReG model, on videos from Something-Something-V2
validation dataset, where each node is represented with a
different color. We observe that the regions are temporally
coherent and generally cover the main object instances.

Appendix. In Figure 4 we present the two scores and ob-
serve that they improve during the learning process hinting
that the model actually learns object-centric representations.
We note that we do not supervise the model in any way with
information from objects but during optimisations, it obtains
representations that correlate with objects.

Implementation Details In all of our experiments we fol-
low the training setting of (Lin, Gan, and Han 2019), by
using 16 frames resized such that the shorter side has size
256, and randomly sample a crop of size 224 × 224. We
add our dynamic graph module to a TSM (Lin, Gan, and
Han 2019) backbone based on ImageNet (Russakovsky et al.
2015) pre-trained ResNet-50 model. To benefit from this Im-
ageNet pre-training, we add our graph module as a residual
connection and initialize the final normalisation of the mod-
ule such that it is ignored at the start of the optimisation.

For the evaluations, we follow the setting in (Lin, Gan,
and Han 2019) of taking 3 spatial crops of size 256 × 256
with 2 temporal samplings and averaging their results. For
training, we use SGD optimizer with learning rate 0.001 and
momentum 0.9, using a total batch-size of 10, trained on two
GPUs. We decrease the learning rate by a factor of 10 three
times when the optimisation reaches a plateau.

The code for the entire model will be soon released.

5 Conclusion

In this paper we propose Dynamic Regions Graph Neu-
ral Networks (DyReG), a method to create localised nodes
that complements the relational modeling of spatio-temporal
data using Graph Neural Networks. We describe and analyze
several contributions: 1) graph nodes mapped to dynami-
cally predicted regions consisting of object-centric represen-
tations that favour instance interactions; 2) a differentiable
pooling operation that facilitates the dynamic prediction of
salient input regions, without object-level supervision. The
resulting method 3) improves the explainability of the model
and leads to 4) state-of-the art results in a human-object in-
teractions classification task.
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Appendix: Dynamic Regions Graph Neural Networks
for Spatio-Temporal Reasoning

In this Appendix, we provide details about our model and
some additional ablation studies. In Section A we present
more technical details about how the regions are generated.
In Section B we describe the dataset used in the synthetic
setting (B.1), present in more detail the models used in the
ablation studies from the main paper (B.2) and also show
two additional ablation studies involving the size (B.3) and
shape (B.4) of the nodes’ kernels. In Section C we present
the distillation used at the start of the training (C.1), the met-
rics used to measure the correlation between our regions and
the existing objects in the scene (C.2) and also the runtime
analysis of our proposed models (C.3).

A Node Region Generation
The goal of this sub-module is to generate the regions that
correspond to salient zones in the input. We achieve this by
processing the input globally with position-aware functions
f and {gi}.

Function f We use f function to aggregate local informa-
tion from larger regions in the input while preserving suffi-
cient positional information. The input Xt ∈ H ×W × C
is first projected into a lower dimension C ′ since this rep-
resentation should only encode saliency without the need
to precisely model visual elements. Then we increase the
receptive field by applying two conv layers, followed by a
transposed conv and then a final conv layer. This results in
a feature map Mt = f(Xt) ∈ RH′×W ′×C′

. Depending on
the backbone and the stage where the graph is added H,W
have different values and we adapt the hyperparameters of
the convolutional layers such thatH ′ andW ′ are not smaller
than 6. For example, in the synthetic experiments f reduces
the input from R16×16×32 to R7×7×16.

Functions {gi} For each i we use gi to extract a global la-
tent representation from which we predict the corresponding
region parameters. We present two variant of gi function, a
larger and more precise one and a smaller, more computa-
tional efficient one.

For the bigger one, we use a simple fully connected layer
of size C × (H ′ ∗ W ′ ∗ C ′) that takes the whole Mt and
produces a vector of size C. This way gi could distinguish
and model the spatial locations of the H ′ ×W ′ grid.

The second approach consists in a weighted global aver-
age pooling for each node i. The weight associated to each
location p is predicted directly from the inputMt,p by a 1×1
convolution. But this results in a translation-invariant func-
tion gi that losses the location information. We alleviate this
by adding to each of the H ′ ×W ′ location a positional em-
bedding similar to the one used in (Vaswani et al. 2017). This

approach predicts regions of slightly poorer quality as the lo-
cation information is not perfectly encoded in the positional
embeddings. For a lighter model, such as the one presented
in Table 2 of the main paper we could use the second ap-
proach for the {gi} functions and also skip the f processing.

Constraints As explained in the main paper, from Equa-
tion 4 we obtain for each node i a set of region parame-
ters oi = (∆xi,∆yi, wi, hi) = α �Wzi. To constrain the
model to predict valid image regions and also to start from
regions with favourable position and size, we apply non-
linear functions for each component. We design the non-
linearities such that wi, hi > 0 and ∆xi + Cx ∈ [0,W ]
and , ∆yi + Cy ∈ [0, H].

h̃ = ehhinit w̃ = ewwinit (11)

∆x̃ = tanh
(

∆x+
W

2
arctanh

2Cx
W

+
W

2

)
− Cx (12)

∆ỹ = tanh
(

∆y +
H

2
arctanh

2Cy
H

+
H

2

)
− Cy (13)

By initialising α = 0 we obtain h = hinit, w = winit
and ∆ỹ = ∆x̃ = 0. This means that all regions are ini-
tialized centered in the reference point C and start with the
predefined size. By default we set hinit = H

6 , winit = W
6 .

B Synthetic Setting
B.1 Dataset details
Based on (Nicolicioiu, Duta, and Leordeanu 2019) we cre-
ate MultiSyncMNIST. It consists of videos, each having 10
frames of size 128 × 128, where MNIST digits move on
a black background. Each video has 5 moving digits and
a subset of them moves synchronously. Different from the
original version, each video could contain multiple instances
of the same digit class and a subset of any size can move in
the same way. This is done to make it more difficult to dis-
tinguish between multiple visual instances. The goal is to
detect the smallest and largest digit class among the sub-
set of synchronous digits with each pair of two digits form-
ing a label. In total, we have 55 possible pairs of two digits,
and adding a class for videos without synchronous digits re-
sults in a 56-way classification task. For example, if a video
contains the digits: {2, 4, 6, 7, 7} and the subset {4, 6, 7} is
moving in the same way, it has the label associated with the
pair: {4, 7}. The dataset contains 600k training videos and
10k validation videos.

B.2 Ablation details
We give more details about the models used in the ablation
studies performed on the synthetic setting.



Figure 6: Visualisation of variants of the kernel functions used by the differentiable pooling mechanism to extract node features.

Learnable
(Full)

Fix
λ = 6

Fix
λ = 7

Fix
λ = 6

Fix
λ = 6

Fix
bilinear

95.09 93.41 94.11 94.04 94.03 90.99

Table 4: Experiments on MultiSyncMNIST investigating
the size of the learned regions. The best performance is
obtained when the size is dynamically predicted while the
worst is given by a model with the regions kept at the min-
imum value, corresponding to the standard bilinear interpo-
lation kernel.

Linear Gaussian Log-linear
T = 1.0

Log-linear
T = 7.0

Log-linear
T = 20.0

93.41 91.74 91.52 90.46 89.85

Table 5: Experiments on MultiSyncMNIST exploring the
shape of the nodes’ regions. We use different kernel func-
tion and observe that the results improve with the sharpness
of the kernel as seen in Figure 6. In the main paper, we use as
default the Linear kernel function.

2D Oracle We take the ground-truth set of digits and pre-
dict the pair formed from the smallest and the largest digits
among them. This approach completely ignores the move-
ment, acting as a single-frame upper-bound.

2D ResNet-12 Model This is a convolutional network as
defined in torchvision library, applied independently at each
frame. The resulting features are temporally aggregated
by an average pooling and projected to obtain the final
prediction.

All the graph models presented in this section use the
ResNet backbone and add a single graph module with
N = 9 nodes, placed at the second stage. In the following,
we vary the way we create the graph nodes, keeping the
same graph processing.

Grid Model This model keeps the nodes’ regions at the
same location and size as the initialization. In order to cover
the whole image, the regions are arranged on a 3× 3 grid.

Static Model In this model, the regions’ locations are op-
timized from the whole dataset, not predicted from the cur-
rent input as in our full model. This is achieved by replacing
each zi features from Eq. 4 in the main paper with learnable
parameters. We keep the size of the regions fixed and we use
a single set of parameters for all time steps to control the
location of each node.

Constant-Time Model This model predicts the same
nodes’ regions at each time step, base on the whole video,
without adapting to each individual frame. The size of the
regions is kept fixed and the f function is applied only once

over the mean pooling of the features from all time steps and
the GRU is omitted since it receives a single time step.

Position-Only Model This is similar to our full model but
used to optimise only the nodes’ location, keeping the size
of the regions fixed to the initial value.

DyReG (Full) Model This is our proposed DyReG model,
that predicts both location and size of the nodes’ regions ac-
cording to the current input, allowing different regions for
each frame. We use the default setting for Node Region Gen-
eration with the convolutional network as the f function and
the {gi} functions implemented as fully connected layers, as
detailed in the previous section.

DyReG-Lite Model This is the lighter version (in terms of
parameters) of our proposed DyReG model, that skips the f
processing and uses a weighted average pooling for the {gi}
functions, as explained in the previous section.

Semantic Model In this model, we follow an approach
similar to (Chen et al. 2019) and (Liang et al. 2018) to create
global nodes that are biased towards capturing semantic con-
cepts. This is complementary to our method that is focused
on instance-oriented nodes, clearly localised in the scene.
For each node, the model predicts a map that is used to glob-
ally pool the input features. The map is predicted from the
input features using a 1× 1 convolution.

B.3 Ablation: Regions’ Size
In the previous section, we validated that adapting the size of
each region according to each video leads to better results.



In this subsection, we conduct more experiments to find a
fixed size that is as close as possible to the performance of
the learned one. We fix the size of each region to H

λ where
H = 16 and λ ∈ {6, 7, 8, 11, 16} and show the results of the
corresponding models in Table 4. Setting λ = 8 corresponds
to regions having approximately the expected values of the
regions predicted by the Full DyReG model. We note that
the model is relatively robust to reasonable choices of size
but the best performance is achieved when the size of each
region is dynamically predicted from the input. We also ob-
serve that by setting λ = H = 16 we arrive at the standard
bilinear interpolation kernel. This setting leads us to a model
that is more unstable in training than any other model and
obtains poorer results. This is probably caused by two rea-
sons. First, the regions cover a small area thus they must be
more precise to cover small entities and also they could not
cover large entities in their entirety. Second, due to the small
receptive field of each node, the resulting gradients used to
update the region parameters are noisier.

B.4 Ablation: Kernel Shape
In our model, we pool the graph features using a kernel func-
tion K defined by two sets of parameters corresponding to
the center and size of the kernel, normalised such that the
sum of its elements is 1. For node i, we define a separable
kernel at any position p as:

K(i)(px, py) = k(i)x (px)k(i)y (py) ∈ R (14)

We experiment with different types of kernel functions,
allowing us to change the shape of the regions and the dis-
tribution of the pooling weights. We present how the kernel
is defined for one axis.

In all our main experiments we use as default the follow-
ing kernel. On each axis, it decreases linearly with the dis-
tance to the center of the kernel.

k(i)x (px) = max(0, wi − |ci,x + ∆xi − px|) (15)

We also experiment with a Gaussian kernel with standard
deviation controlled by the region size parameters hi, wi.

k(i)x (px) = exp
(
− (ci,x + ∆xi − px)2

2w2
i

)
(16)

Then we tested a log-linear kernel, where the temperature
T controls the sharpness of the distribution.

k(i)x (px) = log
(

1+T ·max(0, wi−|ci,x+∆xi−px|)
)

(17)

The kernels are presented in Figure 6 and we use them for
training Position-Only models with results shown in Table 5.
The shape of the kernel should depend on the processed en-
tities and in this task we observe that the performance in-
creases with the sharpness of the kernel.

C Human-Object Interactions
C.1 Distillation for kick-starting the optimisation
We observed that when we add three graph modules at dif-
ferent layers in the TSM backbone, the optimisation of the

Model Layer Top 1 Top 5

TSM - 61.1 86.5
DyReG r3-r4-r5 62.1 87.4
DyReG Distill r3-r4-r5 62.8 87.7

Table 6: Results on Something-Something-v2 validation
dataset, using a single 224 × 224 central crop. We observe
that DyReG models improve over the TSM backbone and
that it is crucial to have the kick-start given by the distilla-
tion to learn multiple dynamic graph modules.

learned regions for two of them behave poorly, resulting in a
model with the same accuracy as one with a single graph. By
visualizing the interpretable kernels, we notice that only the
one corresponding to the last module behaves well show-
ing that indeed a single graph module is effectively used.
We solve this problem by guiding the learning of the kernels
at the start of the optimisation. We first learn three sepa-
rate models each having a single graph module placed at a
different stage, as these models do not exhibit optimisation
issues. Then we distill the predicted regions of each model
into a larger model containing three graph modules.

This involves supervising the nodes’ region parameters
of the larger model from the parameters predicted by the
models having a single graph module at the corresponding
layer. This distillation happens in the first few epochs of the
training iterations to kick-start the learning process, then the
training continues with only the video classification signal.
We note that distilling for 40% or 10% of the training iter-
ations leads to similar results. The performance of DyReG
models, one trained with the distillation procedure and one
without it is shown in Table 6. Both of them improve over
the TSM backbone and by visualizing the kernels we ob-
serve that, using the distillation kick-start, the graphs from
all three stages learn to adapt their regions.

C.2 Object-centric metrics
Our method focuses on extracting a set of few nodes, rep-
resenting salient regions in the scene. By predicting regions
clearly localised in space, the nodes’ features are biased to-
wards capturing object-centric representation.

We propose two metrics to quantify to what degree the
nodes cover existing ground truth (GT.) objects in the scene
annotated by (Materzynska et al. 2020). First, we measure
the distance between the center of the predicted regions and
the center of the GT. objects. To take into account also the
size of the regions we also measure the intersection over
union (IoU) between them.

In the following, we describe the first one. For each node
region in each frame, we compute the minimum L2 distance
to all GT. object bounding boxes and average all of them.

Distp =
1

NF

F∑
f=1

N∑
i=1

minj |Ci + ∆i −Bj |2 (18)

Vice versa we compute for each GT. box the minimum L2

distance to all predicted regions and average all of them.



Model Frames FLOPS Params

I3D 32 153.0G 28.0M
I3D+NL 32 168.0G 35.3M
I3D+NL+GCN 32 303.0G 62.2M
TSM 16 65.8G 23.9M
STM 16 66.5G 24.0M

DyReG r4 16 66.4G 25.7M
DyReG r3-4-5 16 67.4G 28.7M

Table 7: Comparison in terms of the number of operations
and parameters for a single video of size 224× 224.

Distr =
1

NBF

F∑
f=1

NB∑
j=1

mini|Ci + ∆i −Bj |2 (19)

In the previous equations, F is the number of frames in
the whole dataset, N the number of nodes, NB the number
of objects in the current frame, Ci + ∆i is the center of i-
th node’s region and Bj the center of the j-th object in the
current frame and we average over the whole dataset.

The first score (representing precision) ensures that all the
predicted regions are close to real objects, while the second
(recall) ensures that all the objects are close to at least one
predicted region. To balance them, we present as our final
score their harmonic mean.

Similarly, we compute for each node the maximum Inter-
section over Union to all GT. boxes and vice versa.

C.3 Runtime Analysis
We compute the number of operations, measured in FLOPS,
the parameters and the inference time for our model. We
evaluate videos of size 224× 224 in batches of 16 on a sin-
gle NVIDIA GTX 11080 Ti GPU. Our TSM backbone runs
at a rate of 35.7 videos per second while DyReG-r4 runs
at 34.8 videos per second and DyReG-r3-4-5 runs at 32.7
videos per second. In Table 7, we compare in terms of num-
ber of parameters and operations against other current stan-
dard models used in video processing: I3D-ResNet50 (Car-
reira and Zisserman 2017), I3D+NL (Wang et al. 2018),
I3D+NL+GCN (Wang and Gupta 2018), TSM (Lin, Gan,
and Han 2019), STM (Jiang et al. 2019). Note that the I3D-
based models uses 32 frames but for our method, the number
of operations increases linearly with the number of frames
so it is easy to make a fair comparison. The I3D+NL+GCN
model counts also the parameters and the operations of the
RPN module used to extract object boxes. This is charac-
teristic to all the relational models where the nodes are ex-
tracted using object detectors. Contrary to this approach, our
method has a smaller total complexity by directly predicting
salient regions instead of precise object proposals given by
external models.


