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Data: Graph Structure

Bitdefender

Tasks where we have access or we can
create a graph structure.

A graph G is characterized by:

® a set of nodes

X = {z;]i € 1..N}
® connected by edges
&= {ez-j 1 & 1N}
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Data: Graph Structure Bitdefender

Tasks where we have access or we can
create a graph structure.

A graph G is characterized by:

® a set of nodes
X = {z;]i € 1..N}

® connected by edges
E = {eij 1,9 € 1..N}

Each node i is characterized by a set of fea-
tures z; € RY
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Bitdefender

Data: Graph Structure - Nodes

X € RNXD

e all the nodes x; € R” are
stacked into a matrix X € RN xP

® ecach row corresponds to a node
Ti © RP
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Data: Graph Structure - Edges

O 0 N o g A WwWN -

Bitdefender
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Data: Graph Structure - Edges Bitdefender

A € RV*N

1 23 4 5 6 7 8 9 e yun-directed graph: adjacency
1101 0/|0|0|O0fO0]O ... % .
B8 0lololololololo matrix Is symmetric
s[1lololololilololo| @ directed graph: adjacency
4|0|1]|0j0f1]|0]0]0]|O matrix is not symmetric
5(0/0]1]1/0]0]0/0]0] e g,; 0 if thereis an edge from j
s/|0lojo|o|o|1|0[0]|O .
7/0]0|11]0|0|0|0|0]|1 tol
slololololololi1lolol ©® agraph could contain self-loops
9/10|1]0|0|0|0|0O]|1]|1]|0
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G NN S G oa | Bitdefender

® Based on the node features (X) and the graph structure

(A), we want to learn a representation of the graph.
® Depending on the task, the representation could be:

node level: Y € RVxXK
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GNNs Goal

® Based on the node features (X) and the graph structure
(A), we want to learn a representation of the graph.
® Depending on the task, the representation could be:

node level: Y ¢ RV*E
edge level: Y € RM*K

- edge
property

Bitdefender
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G NN S G oa | Bitdefender

® Based on the node features (X) and the graph structure
(A), we want to learn a representation of the graph.
® Depending on the task, the representation could be:

node level: Y € RV*K
edge level: Y € RM*K
graph level: Y € R®

- edge
property
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Properties: structure lelensier

Structure - dependent
the processing should take into account the structure of the graphs

the processing should take into account how nodes are connected

CONNECTIVTY
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Bitdefender
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Properties: permutation invariance and equivariance

There is no canonical order for the nodes of the graph.

Bitdefender

The g‘IowbaI dUtput of th‘e graph processing should be invariant to the order of the nodes.

f(PX,PAP') = f(X, A)

O O N o0 0 A2 W N =

O O N o s WwWN -

Clo|0o|C|C|O|=|=|O|=
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Properties: permutation invariance and equivariance

There is no canonical order for the nodes of the graph.

Bitdefender

The gIobaI output of the graph processing should be invariant to the order of the nodes.

f(PX,PAP') = f(X, A)
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Properties: permutation invariance and equivariance RILSSISHCSE

There is no canonical order for the nodes of the graph.

If we permute the input nodes of the graph, the nodes’ output should be permuted in
the same way.

f(PX,PAP') = Pf(X, A)

o|lo|o|o|=|O|0|C|O|»
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O|=|=lO|lCO|l0O|O|OC|O|v

O 0 N OO s W N -

O 0 N O A WN -

clo|lo|lo|o|o|=|=|e|=
clo|lo|lo|lo|=|o|lo|=|~
oclo|lo|lo|lo|=m|=m|lo|o|w
oclo|lo|lo|lo|o|=|lec|o|e
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Convolutional Network Bitdefender

e takes into account a neighbourhood

e the structure is fixed: a grid for 2D Conv or a
sequence for 1D Conv

® the model is invariant to translations

14/66



Convolutional Network Bitdefender

Yi = E W;T

JEN;

For a convolutional network the neighbourhood is

¢ fixed: for a K x K convolutional filter we
combine exactly K2 neighbours

¢ ordered: we can impose a canonical order among
neighbours (left, right, up, down)

15/66



Convolutional Network Bitdefender

Yi = Z Wi L5 Can we do the same for
JEN; graphs?
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Convolutional Network Bitdefender

® can't have variable

Yi — Z Wy Yi = Z Wj T number of WelghtS
FEN; JEN; ® have to establish an
order
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Convolutional Network Bitdefender

yi= Y w;x; yi= ) [l e Solution: same w for all
JEN; JEN; nodes
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Graph Propagation Bitdefender

Simple graph representation (setw = 1): y; = x; + Z L
JEN;
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Graph Propagation Bitdefender

Simple graph representation (setw = 1): y; = x; + Z L
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Graph Propagation Bitdefender

Simple graph propagation (setw = 1): y; = x; + Z T
jeN;

e if applied iteratively, it takes into account the structure
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Simplest Graph Propagation Bitdefender

Yi = D_ien; L5 €an be rewritten in a compact, matrix formas ¥ = AX

AcRVN X cRY Y ¢ RY

0

OoO|=[(0O|O

]
2
- —
4

C|lOo(—=|0O

C|lOo|=|0O
o|lo|o|©
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Simplest Graph Propagation Bitdefender

Yi = D_ien; L5 €an be rewritten in a compact, matrix formas ¥ = AX

AcRVNXN X RV Y ¢ RY

o|lo|o]|oO 1 0
T 18T (A 2 o 1+3
e e 0/0[0]|1 3 B
o|lolo]oO 4
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Simplest Graph Propagation Bitdefender

Yi = D_ien; L5 €an be rewritten in a compact, matrix formas ¥ = AX

AcRVNXN X RV Y ¢ RY

0o|{o|o0]|oO 1 0

110(1]0 2 B 143

e e 0/0|0]1 3 B 4
o|{o|lo]|oO 4
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Simplest Graph Propagation Bitdefender

Yi = D_ien; L5 €an be rewritten in a compact, matrix formas ¥ = AX

AcRVNXN X ecRrVN Y ¢ RY

ojo|o]|o0O 1 0
110(1/0 2 143

e e 0|l0|0]1 3 ~ 4
olo|o]|oO 4 0
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Simplest Graph Propagation Bitdefender

i = )_ien; ©j Nodes could have high-dimensional representation X € RAw

AERNXN XERNXD YERNXD

@

0" 010 10 ) 0
1101 [0 ) - 1+ 3
0|00 |1 T3 o T4
0(0(0|0O T4 0

® @
O,
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Simplest Graph Propagation Bitdefender

Vi = T; + ZjeM z; We should take into account also the current node - self-loops.

8 AcRNXN X c RVXD y ¢ RVXD
1 0 0 0 1 1
() Q T(1(1]0 zy | |mtaatas
@ \?) 0|01 1 T3 o Po-E4
0|alio|3 T4 T4

®
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Simplest Graph Propagation Bitdefender

To combine more complex representations:
Yi :x’i_'—zje/\/}: €L j — yi:aﬁiW+Zj€Ni :EjW

o XERNXD WERDXC YERNXC
T :1:1W
e e L2 — oW
T3 $3W

© - =
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Simplest Graph Propagation Rillelcner

To combine more complex representations:
Yi :xi+2jENi €L j — yi:xiW+ZjeNi $jW

The operations performed in the graph could be
W rewritten as:

Y = AXW

lteratively, for more layers:

Y = AU(AXWl)WQ)
Y = Ao... Ac(AXW)\Ws).. W,
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GNNs: Message Passing Framework - Send Bitdefener

Send Function
- for each pair of 2 connected nodes, create a message

Mij = fmsg(Ti, Tj) € R V(i,j) €&

mM36 = frmsg(mmm , mom )
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GNNs: Message Passing Framework - Send Bitdefener

Send Function
- for each pair of 2 connected nodes, create a message

Mij = fmsg(Ti, Tj) € R V(i,j) €&

M3 6 = frmsg(mmm , mom )
mM31 = frnsg(mmm , m— )

my2 = fmsg(_ ) UIE‘)
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GNNs: Message Passing Framework - Send Bitdefender

— fmsg is @ learnable function (e.g. an MLP)
— its parameters are shared between each pair of nodes

N\

mgj = }msg(mi’xjy e R V(i,5) €€

m36 = fmsg(mmm , oom )

. Same
ms1 = fmsg(m , o ) parameters

nmggzzj}wg(nnn, oo )
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GNNs: Message Passing Framework - Aggregation Bitdefender

Aggregation Function
For each node i, aggregate the incoming messages from all its neighbours.

hi = fagg({mi;|Vj € Ni})

hs = fage({=, =})
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GNNs: Message Passing Framework - Aggregation Bitdefender

Aggregation Function
For each node i, aggregate the incoming messages from all its neighbours.

hi = fagg({mi;|Vj € Ni})

hs = fagg({ =, =})
h1 = fags({=})
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GNNs: Message Passing Framework - Aggregation RILSSISHCSE

— aggregate incoming messages with the function f,,,:
eg. sum, mean, max, min

— it should be invariant to the order of the nodes and
should allow a variable number of messages

operator

—~
h; = fagg ({szWJ € M}) c R®

hs = fags({=, =})

hi = fagg(1=1})
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GNNs: Message Passing Framework - Update lelensier

Update Function
For each node 7, update its representation using the aggregated message.

T; = fupd(mia hz)

E3= fupd(mmm , =)

31/66



GNNs: Message Passing Framework - Update lelensier

Update Function
For each node 7, update its representation using the aggregated message.

0 o T; = fupd(xia hz)
PG E3= fupa(mmm , =)
= ()
= 9 To= fupd( el §)
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GNNs: Message Passing Framework - Update lelensier

— fupa 1S @ learnable function (e.g. an MLP)
— its parameters are shared between all the nodes

Learnable function

_A\

T; = ?upd(xia hS = RC

E3= fupd( = , =)
& ’ \ Same
¢ parameters
To= fupd( [EEEE 7§) /
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GNNs - Overview Bitdefender

1. Send 2. Aggregate 3. Update

Mij = fmsg(Ti, Tj) H; = fagg({mij|Vj € Ni}) Ti = fupd(Ti, H;)

33/66



General GNN framework Bitdefender

Depending on how the 3 functions are instantiated, different architectures could be
obtained:

Convolutional GNNs Attention GNNs Message Passing

fupa(@is @ {0(2)})  fupa(zi, P {o@s, z)d(x5))  fupalai, @ {¢(i,z5)})

ViEN; VieEN; VieN;

34/66



Graph Convolutional Network Bitdefender

Yi — f?Lpd($ia @ { (,75(.”17]) })

VieN;
® messages depend only on the source nodes

[10] Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. ICLR 35/66
2017



Graph Convolutional Network Bitdefender

yi = fupd(zi, D {6(z5)})
VieEN;
® messages depend only on the source nodes
® aggregation function is implemented as a
sum/mean operation
® aggregation could be normalized according to the

nodes’ degree: 1
S )

Matrix form: Y = o(AXW)

[10] Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. ICLR 35/66
2017



Graph Attention Network Bitdefender

Yi — fupd(x’i) @ {O‘(x’bxj){ Qb(il?]) })

Vi eN;
® messages depend only on the source nodes

[11] Vaswani et. al. Attention is all you need. NeurlPS 2017
[12] Velickovi¢ et. al Graph attention networks. ICLR 2018 36/66



Graph Attention Network Bitdefender

vi = fupa(zi, {| €D {ed@i, @5) 6(x;)})
ViEN;
® messages depend only on the source nodes
® aggregation function is based on attention
mechanism

GAT: a(x;, x;) ReLU(CL[ZUz'Wl,.ijWQ]T) e R
Self-Attention: a(z;, x;) oc 2; Wy (z;Wa)! € R

® the model is able to learn the desired structure

[11] Vaswani et. al. Attention is all you need. NeurlPS 2017
[12] Velickovi¢ et. al Graph attention networks. ICLR 2018 36/66



Message Passing Neural Network Bitdefender

Yi = fupd(xia @ { (,75(.272,517]) })

VieEN;

® messages depend on both source and destination
® if edge features are available, the message could
also take them into account

[13] Battaglia et. al. Interaction networks. NeurlPS 2016
[14] Gilmer et. al. Neural message passing for quantum chemistry. ICML 2017 37/66



Message Passing Neural Network Bitdefender

i = Fupa(wis G {$(wir 7))
ViEN;
® messages depend on both source and destination
® if edge features are available, the message could
also take them into account
® aggregation function is implemented as a
sum/mean operation

[13] Battaglia et. al. Interaction networks. NeurlPS 2016

[14] Gilmer et. al. Neural message passing for quantum chemistry. ICML 2017 37/66



Multiple Layers Bitdefender

e for a more powerful representation, we can stack multiple layers
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Multiple Layers Bitdefender

e for a more powerful representation, we can stack multiple layers
® cach layer increases the receptive field of each node

RECEPTIVE FIELD:

ad ad ad ol
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Graph Output - Node Level Bitdefender

e predict an output y; from each node

~ K
— node Yi = foutput (:Ez) eR
property

T ® the loss function is applied for each node in
the graph

L= Lilykh)

3%
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Graph Output - Edge Level Bitdefender

® predict an output y;; from each pair of nodes
Yij — foutput(fia af]) - RK

— edge
property

® the loss function is applied for each edge in
the graph

L= Z Li( yzya zy

(i,7)€E
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Bitdefender

Graph Output - Graph Level

® predict a single output y for the whole graph
Y = freadout({f”Vi = V}) c RK

— ® f ..iout COUld be a simple order-invariant
PIEpe aggregator (e.g. sum, mean), or more
complex graph pooling mechanisms

® the loss function is applied for each graph in
the dataset

41/66



Learning Bitdefender

® the output of a GNN for a node i is obtained by applying a sequence of
operations on the initial nodes

® all the operations along the sequence should be differentiable

./
@el\’

L

42/66



GNNs applied in Vision Bitdefender

General Framework:

® Create Nodes
® Create Relations
® GNN Processing

43/66



GNNs applied in Vision Bitdefender

What could be a node in an image?
e fixed points / patches

® object detectors

® predicted region

44/66



GNN Application - Object detectors Approach Bitdeferider

Pros:

® most interactions in a scene involve
objects
e offers some degree of interpretability

cons:

® rigid regarding what types of
interaction you can model
® expensive in terms of annotations

45/66



GNN Application - Object detectors Approach Bitdefender

[3] Wang and Gupta. Videos as space-time region graphs. ECCV2018

Graph structure:

— nodes are extracted using a

pre-trained object detector
— two types of graphs could be built:

similarity graph: edges between all
the nodes, regardless of the time

: < step

e sy X AT spatial graph: for two time steps

(t,t + 1) draw an edge if

IoU > threshold. Similar for (¢,t — 1)
pairs.
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Bitdefender

GNN Application - Object detectors Approach

Graph model:

— a GCN (AXW) is applied for each type of
graph structure and the results are fused.
— to obtain a representation at the graph
e A level (for the whole video) we aggregate all
e s the nodes in the graph.
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GNN Application - Patches Approach Bitdefender

Pros:

® simple way to encode a locality bias
® casy to use, no need for external
modules

cons:

e trade-off computation efficiency vs
fine grained relations

® the captured interactions are not as
interpretable
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GNN Application - Patches Approach Bitdefender

[15] Nicolicioiu, Duta, Leordeanu. Recurrent space-time graph neural networks.
NeurlPS 2019

/ : DC ) Graph structure:
4 / ................. 9 ¢ form graph nodes from fixed regions at
4> & ¢
AP : (o different scales
67 O Mo
7 CDC . ® connect the neighbouring nodes -> sparse
graph

FEATURES PROCESSING
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GNN Application - Patches Approach Bitdefender

[15] Nicolicioiu, Duta, Leordeanu. Recurrent space-time graph neural networks.
NeurlPS 2019

; DC ) Graph structure:
g OO CDC . ¢ form graph nodes from fixed regions at
C po : (o different scales
9, C:) 0
»
5 DC 0§ ® connect the neighbouring nodes -> sparse
graph

PROCESSING
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GNN Application - Patches Approach Bitdefender

Graph model:
® Send: messages represent pairwise spatial interactions
fsend (v, vi) = MLPs([v;|vi])
® Gather: aggregate received messages by an attention mechanism

fgather(vi) — Z a(Vjavi)fsend(VjaVi)
JEN (i)

e Update: incorporate global context into each local information

fspace (Vz) — MLPu([Vilfgather(Vi)])

50/66



GNN Application - Patches Approach Bitdefender

Graph model:

® across time, each node updates its spatial
information using a recurrent function

ht"k — ftime( VI'C 3 ht'_l’k)

(] ? 7

time space time
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GNN Application - Predicted Nodes Approach Bitdefender

Pros:

® adapt the type of entities to the
current task/scene

® don't need object-level
supervision/external modules

Cons:
® add complexity to the model
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GNN Application - Predicted Nodes Approach Bitdefender

[16] Duta, Nicolicioiu, Leordeanu. Discovering Dynamic Salient Regions with
Spatio-Temporal Graph Neural Networks. NeurlPS 2020 - ORLR workshop

! EXTRACT |  REGIONS | NODE J

A \ FEATURES  GENERATION  EXTRACTIONS Gl‘aph structure:
Ky . o
o, e 4 e dynamically produce N = 9 regions defined

HE

m ;{ by their location (Az, Ay) and size (w, h)
. ® extract features from each region using a
g [0} differentiable pooling
+

>

k(ACILL, wi,pm) - max(O,wi — |Cz',:1c + X — px|)

classification loss

: j [;DJ ® train whole model from the video
=
am C| p
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GNN Application - Predicted Nodes Approach Bitdefentier

' EXTRACT |  REGIONS ! NODE ' GNN '
A FEATURES GENERATION EXTRACTIONS PROCESSING

£|E|s|z]

Graph model:

® spatio-temporal graph
processing similar to RSTG

- [§lEls e

he
1)
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GNN Application - Predicted Nodes Approach Bitdefentler

' EXTRACT |  REGIONS ! NODE ' GNN ! GRAPH e
A | FEATURES  GENERATION  EXTRACTIONS PROCESSING RE-MAPPING
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Transformer

Task: analyse a sequence of words. X = x1, 29, ..., zN.

Q0000000
Q0000000

Feed
Forward

-
Add & Norm

=

4
 S——

Nx | —(CAdc & Nom )

Muilti-

Head

Attention

\.

, -

—

)

y,

Positional
Encaoding

D

Input
Embedding

I

Inputs

Bitdefender
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Transformer Bitdefenicer

Task: analyse a sequence of words. X = x1, 29, ..., zN.

Q0 000000
. RON 00 Self - Attention

Scaled Dot-Product Attention . .
® Process a sequence in multiple layers

t ® Each element attends to all other elements
- B in the previous layer
SoftMax QKT
T
Mask}(opt,) Y = softmax( 7 1%
Scale
t ® where Q@ = XW,, K = XW;, V = XW,
MatMul
t 1
Q K V
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Transformer Bitdefenter

Self-attention

QK"
Vid
where Q = XW,, K = XW;, V = XW,

Y = softmax(

)V

Q " RNXC KT = RCXN

V= RNXC

57/66



Transformer Bitdefenter

Self-attention

T
Y:softmax(Q\Z )V
where Q = XW,, K = XW;, V = XW,
A e RVN Ve RV*¢

57/66



Transformer Bitdefencer

Self-attention

i3
Y = softmax(Qj(C_i )V GCN

N

Y

oy Y =o(Jll XW)
where Q = XW,, K = XWy, V. = XW,,

A e RVN V e RV*¢

57/66



Transformer

KT
Y:Q

|4
0000000 vd

Query Key Value

ooooooooyﬁzﬁaﬁ@mﬁma
Vi o

J/

N~

o(2:,25)
e
. | X7 ® Yi = fupa(i, Z {olzizq)e(z) D)
&5 T, e
o ,® alwiyag) = —=@Wa)" (2;Wi)
o(xj) = z;W;

Bitdefender
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Transformer Bitdefenider

Transformer is a special case of Graph Neural Networks where

® all the nodes are connected
® pairwise messages are weighted by dot product attention
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Transformer - Vision Bitdefenicer

Transformers are becoming popular in CV.

ViT [17]
¢ ViT [17]: model composed entirely
on self-attention modules. Scale

well on extremely large datasets.

e DeiT [18]: stronger augmentations +
distillation => strong transformers
models trained only on ImageNet

[17] Dosovitskiy at al. An image is worth 16x16 words: Transformers for image recogition. ICLR, 2021

[18] Touvron at al. Training data-efficient image transformers distillation through attention. PMLR 60/66
2021.
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Transformers are becoming popular in CV.

ViT [17]

e ViT [17]: model composed entirely
i on self-attention modules. Scale
I well on extremely large datasets.

Transformer Encoder

e @5 E’IS dy @IS ® DeiT [18]: stronger augmentations +

Icﬁzg:]lia;;&tygmg Linear Projection of Flattened Patches o g .

| T distillation => strong transformers
Em— AR models trained only on ImageNet
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[17] Dosovitskiy at al. An image is worth 16x16 words: Transformers for image recogition. ICLR, 2021

[18] Touvron at al. Training data-efficient image transformers distillation through attention. PMLR 60/66
2021.



Supervision from Language Bitdefender

CLIP (Contrastive Language—Image Pre-training) [19]

1. Contrastive pre-training

Text

B T 1 1T - | ® |earn from large collection of
r el B S Image-sentence pairs
® best models use Transformer
models both for text (GPT2) and
images (ViT)
® zero shot transfer

— I I Ty Il IpTy IpTy
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Supervision from Language Bitdefender

CLIP (Contrastive Language—Image Pre-training) [19]

2. Create dataset classifier from label text

a photo of Text

i ® |earn from large collection of
Image-sentence pairs
® best models use Transformer

3. Use for zero-shot prediction : A L mOdQIS bOth fOr text (G PT2) and
o Il e images (ViT)
.—’ meg ——— L, 4T L% &G - LT, ® zero shot transfer
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Supervision from Language Bitdefender

CLIP (Contrastive Language—Image Pre-training) [19]

ImageNet Zera-Shot
Dataset Examples ResNet101 CLIP A Score

o -
=S I
. 4
+ P 1 “’(.."\ ~

ImageNel & X' 762 76.2 0%

ImageNetV?2 64.3 70.1 +5.8%

ey ® CLIP is more robust than standard
supervised models

ImageNet-R

ObjectNet [+ o T 326 723  +39.7%

ImageNet |

25.2 60.2 +35.0%
Sketch

ImageNet-A [1&F : - 27 771 +74.4%
— : L
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Self Supervision - Transformers Bitdefender

DINO [20]

® model self-supervised on ImageNet

e self-supervised models obtain
better attention maps compared to
supervised ones
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Transformer - Vision Bitletender

TimeSformer [21]

Is Space-Time Attention All You Need for Video Understanding?
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® evaluate different connectivity
patterns in the attention
mechanism

frame L - &

LT T I T e
EDEE TIORDE TOND
EEEE SENF SENE
HEEE EEEE EEED

Joint Space-Time Divided Space Time Sparse Local Global Axlal Attention
Attention (ST) Atention (T+8) Altention (L+G) (T+W+H)

-
o
=
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e Divided Space-Time Attention (T+S)
has best accuracy, while being
computational efficient

rame | +

Space Attention (S)

[21] Is space-time attention all you need for video understanding? Arxiv. 2021 64/66



Graph Neural Networks - Resources Bitdefender

This lecture was influenced by several great resources about Graph Neural Networks.
For a more in depth understanding of Graph Neural Networks and other related areas,
please take a look:

® Michael Bronstein, Geometric deep learning, from Euclid to drug design
® Petar Velickovi¢, Theoretical Foundations of Graph Neural Networks

® Jure Leskovec, CS224W: Machine Learning with Graphs

e William L. Hamilton, Graph Representation Learning Book

® Razvan Pascanu, GraphNets - Lecture at TMLSS (Transylvanian Machine Learning
Summer School)

® Xavier Bresson, Convolutional Neural Networks on Graphs

® Michael Bronstein, Graph Deep Learning Blog
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References | Bitdefender

Fake news detection on social media using geometric deep learning.

Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting.

Videos as space-time region graphs.

Geometric deep learning on graphs and manifolds using mixture model cnns.
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Skipgnn: predicting molecular interactions with skip-graph networks.

Discovering symbolic models from deep learning with inductive biases.

Graph matching networks for learning the similarity of graph structured objects.

Pointer graph networks.

66/66



References lli Bitdefender

Graph convolutional neural networks for web-scale recommender systems.

Semi-supervised classification with graph convolutional networks.

Attention is all you need.

Graph attention networks.
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References IV Bitdefender

Interaction networks for learning about objects, relations and physics.

Neural message passing for quantum chemistry.

Recurrent space-time graph neural networks.

Discovering dynamic salient regions with spatio-temporal graph neural networks.
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An image is worth 16x16 words: Transformers for image recognition at scale.

Training data-efficient image transformers & distillation through attention.

Learning transferable visual models from natural language supervision.

Emerging properties in self-supervised vision transformers.

66/66



References VI Bitdefender

|s space-time attention all you need for video understanding?
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