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• all the nodes xi ∈ RD are
stacked into a matrixX ∈ RN×D
• each row corresponds to a node
xi ∈ RD

2/47



Graph Data

1

4


7


9


8


6


5

3


2

• all the nodes xi ∈ RD are
stacked into a matrixX ∈ RN×D
• each row corresponds to a node
xi ∈ RD

2/47



Learning

• the output of a GNN for a node i is obtained by applying a sequence of
operations on the initial nodes
• all the operations along the sequence should be differentiable
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GNNs: Message Passing Framework - Send
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– fmsg is a learnable function (e.g. an MLP)
– its parameters are shared between each pair of nodes

mij =

Learnable funcion︷ ︸︸ ︷
fmsg(xi, xj) ∈ RC ∀(i, j) ∈ E

Same 
parameters


. . .
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GNNs: Message Passing Framework - Aggregation
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– aggregate incoming messages with the function fagg:
◦ usualy not learnable: eg. sum, mean, max, min
◦ learnable: e.g. LSTM

– it should be invariant to the order of the nodes and
should allow a variable number of messages

hi =

operator︷︸︸︷
fagg ({mij |∀j ∈ Ni}) ∈ RC

. . .
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GNNs: Message Passing Framework - Update
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– fupd is a learnable function (e.g. an MLP)
– its parameters are shared between all the nodes

x̃i =

Learnable function︷ ︸︸ ︷
fupd(xi, hi) ∈ RC

Same 
parameters
. . .
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GNNs - Overview

1. Send

mij = fmsg(xi, xj)
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2. Aggregate

Hi = fagg({mij |∀j ∈ Ni})
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3. Update

x̃i = fupd(xi, Hi)
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Multiple Layers

• for a more powerful representation, we can stack multiple layers

GNN GNN GNN
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Multiple Layers

• for a more powerful representation, we can stack multiple layers
• each layer increases the receptive field of each node

GNN GNN GNN

RECEPTIVE FIELD:
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Application: Fake News Identification

Goal: determine if a Tweet links to a fake news article
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Application: Fake News Identification

Challenges:
• understanding news requires knowledge of political / social context

• often written in bad faith to appear real

• highly nuanced

News Spread
"Falsehooddiffused significantly farther, faster, deeper, andmore broadly than the truth"1

Idea
• Analyse the news diffusion patterns with GNNs.

1[1]: Vosoughi et. al. The spread of true and false news online. Science (2018). 10/47
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Application: Fake News Identification

• gather stories classified by fact-checking orgs like Snopes, PolitiFact
• for each story form a graph of all the tweets and retweets mentioning it
• edges are follow relations or retweet relations

[2]: Monti et. al. Fake news detection on social media using geometric deep learning (2019). 11/47
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Application: Fake News Identification

• apply standard GNN model
• node features:

◦ User profile (geolocalization, language, embedding of self-description, date of
account creation)

◦ Network and spreading (No. of followers, timestamps, No. of replies, quotes,
favorites and retweets for the source tweet)

◦ Content (embeddings of tweet text).
� Surprising: not that relevant!
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When to use GNNs?

• What are the cases where it is beneficial to use GNNs?

• What design choices should be made for a specific task?

◦ Do we want sum or max in the aggregation?

◦ Should we share parameters between layers?

◦ Should we use distances or order information when we have them?
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When to use GNNs?
Usual deep Learning approach:
• learn end-to-end f(X) from data with the specific model f (MLP, CNN, RNN etc.)
• each model is appropriate in certain cases

Inductive biases
An inductive bias allows a learning algorithm to prioritize one solution over another,
independent of the observed data.

Weak Sequentiality

 Locality Strong 
relational bias

UNSTRUCTURED SEQUENTIAL
 GRID
COMPLEX 

RELATIONAL

STRUCTURE


MLP RNN
 CNN GNN

Structure

Inductive 

Bias

Model
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Relational Reasoning

Relational Reasoning
Manipulating structured data, that consists in multiple entities that establish various
relations between them.

From some perspective, relational reasoning could be appealing.
For example, a visual scene could be seen as:
• an image / a grid of points
• a set of objects with multiple relations between them
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Relational Inductive Biases

Inductive biases
An inductive bias allows a learning algorithm to prioritize one solution over another,
independent of the observed data.

Relational inductive biases in GNN:
• explicit factorisation into nodes, each corresponding to an entity

• explicit modeling of pairwise relations between nodes

• flexibility in establishing different connectivity

• order invariant

[3] Battaglia et. al. Relational inductive biases, deep learning, and graph networks. 2018 16/47



When to use a GNN?

GNNs could be appropiate if:
• there exist entities and relations in the data

◦ explicit: social networks, molecules

◦ implicit: visual scenes, environments...

• the relational processing is beneficial

17/47



Shortest path Problem

• Lets analyse a purely reasoning problem of finding the shortest path in a graph.

◦ Can GNNs solve this problem and how sample efficient are they?

S
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Shortest path Problem

• Lets analyse a purely reasoning problem of finding the shortest path in a graph.

◦ Can GNNs solve this problem and how sample efficient are they?

GNN Method
for layer k in 1 .. K do

for node i in V do
xk
i = fupd{xk−1

i , fagg
∀j∈Ni

{fmsg(x
k−1
i , xk−1

j )}

end for
end for

Bellman-Ford Algorithm
for iter k in 1 .. K do

for node i in V do
d[k][i] = min

∀j
{d[k − 1][j] + cost(i, j)}

end for
end for
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Task Alignment

• if the GNN learns to simulate the update step in the Dynamic Problem, it will solve
the problem

• if the operation is easy to lean, then the GNN can easily solve the problem

• if both are true, we say that the GNN is well aligned with the task

Alignment
We say that amodel is alignedwith a task, if by replacing some parts of themodel with
some ideal operations we would solve the task. If the parts can easily learn the ideal
operations, we say that it is well aligned with the task.

Generally:
• If a model is well aligned with a task, it will lean it easily

(it has low sample complexity).

[4] Xu et. al. What Can Neural Networks Reason About? ICLR 2020 20/47
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Task Alignment

GNN Method
for layer k in 1 .. K do

for node i in V do
xk
i = fupd{xk−1

i , fagg
∀j∈Ni

{fmsg(x
k−1
i , xk−1

j )}

end for
end for

Bellman-Ford Algorithm
for iter k in 1 .. K do

for node i in V do
d[k][i] = min

∀j
{d[k − 1][j] + cost(i, j)}

end for
end for

• What decision can we take to have the GNN "more aligned"?

◦ use min as an aggregator function
◦ share the parameters between layers

• Is x̃i = MLP([x1, x2, ...xN ]) well aligned?
◦ it is less aligned than the GNN functions
◦ it has to learn to create node pairs and then it has to select the minimum between
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Alignment
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Alignment: Physical Particles

GNNs Analogy to Newtonian Mechanics
Nodes Particles

Pair of nodes Two interacting particles (i,j)
Send Function: fmsg Compute force Fij

Aggregate Function: fmsg Sum into net force Fnet,i
Update Function: fmsg Compute acceleration ai = Fnet,i/mi

[5]: Cranmer et. al. Discovering Symbolic Models from Deep Learning with Inductive Biases. Neurips
2020. 23/47



When to use a GNN?

• Apply GNNs on tasks that are well aligned with this model

◦ dynamic programming

◦ relational reasoning

• Apply GNNs when relational processing is beneficial

◦ explicit entities and relations: social networks, molecules

◦ implicit entities and relations: visual scenes, environments...

• Try to design your GNN to be as aligned as possible to your problem

24/47



Application: Physical Particle Interactions

[6] Battaglia et. al. NeurIPS 2016

[7] Gonzalez et al. ICML 2020
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Application: Physical Particle Interactions

Encoder:
• each node corresponds to a particle
• link top-k nearest neighbors
• Node features:

◦ position and velocity
◦ particle type

[7] Gonzalez et al. ICML 2020 26/47



Application: Physical Particle Interactions

Process:
• use 10 GNN layers
• local propagation based on

neighbourhood

Decoder:
• predict next step attributes
• train based on node level loss

[7] Gonzalez et al. ICML 2020
27/47



Application: Physical Particle Interactions

Observations:
• the method is traned for next step predictions but at test time is unrolled for

thousand of steps
• GNN method could generalise to 34 times more nodes at test time

◦ because the interactions to nearest neighbours
• relative positions are is better than global positions

◦ underlying physical processes are invariant to spatial position,

Overall:
• GNN is aligned to the task
• the GNN has built in good relational biases

◦ use local interactions
◦ relative position for built in spatial invariance

28/47



Transformer

Task: analyse a sequence of words. X = x1, x2, ..., xN .

Self - Attention

• Process a sequence in multiple layers
• Each element attends to all other elements

in the previous layer

Y = softmax
(QKT

√
d

)
V

• where Q = XWq ,K = XWk , V = XWv
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Transformer
Self-attention
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Transformer
Self-attention

Y = softmax
(QKT

√
d

)
︸ ︷︷ ︸

A

V

where Q = XWq ,K = XWk , V = XWv

GCN

Y = σ( A XW )

.
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Transformer

Y =
QKT

√
d
V

yi =
∑
∀j

1√
d

Query︷ ︸︸ ︷
(xiWq)

Key︷ ︸︸ ︷
(xjWk)

T︸ ︷︷ ︸
α(xi,xj)

Value︷ ︸︸ ︷
(xjWv)

yi = fupd(xi,
∑
∀j∈Ni

{α(xi, xj)φ(xj)})

α(xi, xj) =
1√
d
(xiWq)

T (xjWk)

φ(xj) = xjWj
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Transformer

Transformers vs GNNs
Transformer is a special case of Graph Neural Networks where
• all the nodes are connected
• pairwise messages are weighted by dot product attention

32/47



Transformer - NLP

Transformers are now the standard model in NLP.

BERT [8]

GPT-3 [9]

33/47



Transformer - Vision

Transformers are becoming popular in CV.

ViT [10]

TimeSformer [11]
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Transformer - Vision

Transformers are becoming popular in CV.

ViT [10] TimeSformer [11]
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GNN - Challenges: Scalability

Context:
• ML methods work with mini-batches where each element is independent

• in many node level graph tasks, the entire dataset forms a large graph where each
node is connected to many other ones.

Problem:
• the whole graph is too big to fit into memory.

◦ process independently the neighbourhood of each node

◦ the neighbourhood could still grow exponentially:

35/47



Challenges: Scalability

Solution:
• sample [12],[13] the nodes, forming sub-graphs and apply the GNN over them

Benefits:
• can work with very large graphs
• the sampling acts as a regularizer, similar to dropout

Full Graph Sub-Graph

node 1

Sub-Graph

node 2
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Challenges: Oversmoothing

If we want node information from a K-order neighbourhood
• use K layers of Graph propagation
• usual problems

◦ harder to optimize due to vanishing / exploding gradients
◦ overfitting due to large number of parameters

• graph propagation problem: oversmoothing
◦ graph propagation can be seens as "smoothing" the a node according to its

neighbourhood
◦ if we do many propagations, different nodes would become almost

indistinguishable, hurting node-level tasks

37/47



Challenges: Oversmoothing

Oversmoothing
Nodes with similar structure in their neighbourhoods would end up indistinguishable,
regardless of their initial features.

More often:
• when the graph is dense
• when using self-loop in the update function

38/47



Oversmoothing: Solutions

Solutions:
• residual Connections [14, 15]:

◦ skip one or more layers

◦ add the representations of a node from different layers hk+1
i ← hk+1

i + hki

◦ takes more into account the identity of each node
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Oversmoothing: Solutions

Solutions:
• make the graph more sparse: e.g apply dropout on edges [16]

• PairNorm[17]: add a normalisation term that encourages ht+1
i and hti to remain

close while neighbouring nodes maximise their similarity and distant does
minimise their similarity

40/47



Connections to PageRank

Long range are obtained by stacking multiple layers: Aσ(A..σ(AXW1)..Wn−1)Wn

Random Walk
• start in a node and randomly move to adjacency nodes.

• W = I andX ∈ RN a vector containing the probability of being in each node and
A is the transition probability

• this arrives at the PageRank algorithmXt+1 = AXt
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Connections to Personalised PageRank

• PageRank converges to an Y that does not depend of the initial X

• this is related to the oversmoothing problem in the GNN

• in Personalised PageRank the initial starting point count more

◦ at each step there is a chance α to go back to the initial state
Xt+1 = (1− α)AXt + αX0

• we can use a similar formulation in our graph propagation to alleviate the
oversmoothing

◦ the residual connection could be seen as a non-probabilistic variant
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Connections to Personalised PageRank

How can it be used in GNNs?
• make a prediction independently at each node and propagate the answer [18]

X1 = X0W

Xt+1 = (1− α)AXt + αX0

• this is somehow related to label propagation [19]
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Connections to Personalised PageRank

Alternatively:
• compute Personalized Page Rank diffusion matrix S [20][21]
• sparsify the diffusion matrix
• and use it in a GCN

Y = σ(SXW )

44/47



Overview

• Graph Neural Network framework

• application: fake news detection

• When to use GNNs?

◦ relational inductive biases

◦ alignment

• application: simulating particles

• Transformers are GNNs

• challenges: oversmoothing

• connections to PageRank
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Graph Neural Networks - Resources

For a more in depth understanding of Graph Neural Networks and other related areas,
please take a look:
• Michael Bronstein, Geometric deep learning, from Euclid to drug design Link

• Petar Veličković, Theoretical Foundations of Graph Neural Networks Link

• Jure Leskovec, CS224W: Machine Learning with Graphs Link

• William L. Hamilton, Graph Representation Learning Book Link

• Razvan Pascanu, GraphNets - Lecture at TMLSS (Transylvanian Machine Learning
Summer School)

• Xavier Bresson, Convolutional Neural Networks on Graphs Link

• Michael Bronstein, Graph Deep Learning Blog Link

46/47

https://www.youtube.com/watch?v=8IwJtFNXr1U
https://www.youtube.com/watch?v=uF53xsT7mjc
http://web.stanford.edu/class/cs224w/
https://www.cs.mcgill.ca/~wlh/grl_book/
https://www.youtube.com/watch?v=v3jZRkvIOIM
https://towardsdatascience.com/graph-deep-learning/home


Thank You!
Andrei Nicolicioiu Iulia Duta 

May 2021
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