Graph Neural Networks S

Introduction - Part 2

Andrei Nicolicioiu lulia Duta

Ei#9 UNIVERSITATEA DIN

& BUCURESTI Bitdefender

VIRTUTE ET SAPIENTIA

May 2021 -




Choose your model Bitdefender

UNSTRUCTURED #’

SEQUENTIAL [T WP r% . @%%Zi RNN

Have a nice day! :)

MLP

GRID ‘ CNN
RELATIONAL GNN
STRUCTURE \

a

1/47



Bitdefender

Graph Data

X e RNXD

® all the nodes z; € R? are
stacked into a matrix X € RV*P

® each row corresponds to a node
x; € RP
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Learnin g Bitdefender

¢ the output of a GNN for a node i is obtained by applying a sequence of

operations on the initial nodes
e all the operations along the sequence should be differentiable
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GNNs: Message Passing Framework - Send Bitdefender

— fmsg is @ learnable function (e.g. an MLP)
— its parameters are shared between each pair of nodes

—_——N— c L
meij = fmSg(xhxj) ER V(Z7j)€8

mse = fmsg(m ) ’—'_m_‘)

_ Same
m31 = frnsg(mmm , e ) parameters

My = fmsg(_ ) DI)
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GNNs: Message Passing Framework - Aggregation Bitdefender

— aggregate incoming messages with the function f,4,:

o usualy not learnable: eg. sum, mean, max, min
o learnable: e.g. LSTM

— it should be invariant to the order of the nodes and
should allow a variable number of messages

=~
hz‘ = fagg ({m”Wj GM}) € RC

hs = fayg({ ) })
hi = foge({=1})
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GNNs: Message Passing Framework - Update Bitdefender

— fupa is @ learnable function (e.g. an MLP)
— its parameters are shared between all the nodes

Learnable function

. ‘ \ c
= Sl ta)) € R

Same
€ parameters

Zo= fupd( S 7§) «

Z3= fupd(DID 7§) r\
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GNNs - Overview Bitdefender

1. Send 2. Aggregate 3. Update
Mij = finsg(Ti, Tj) Hi = fagg({mij|Vj € Ni}) T = fupa(xi, H;)
® @
i1
@ O
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Bitdefender

Multiple Layers

e for a more powerful representation, we can stack multiple layers
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Bitdefender

Multiple Layers

e for a more powerful representation, we can stack multiple layers
® each layer increases the receptive field of each node

RECEPTIVE FIELD:
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Application: Fake News Identification

Goal: determine if a Tweet links to a fake news article

New paper from Brain Zurich and Berlin!

\WERGYE:' conv and attention free vision architecture:LYIREV VG
(arxiv.org/abs/2105.01601)

Bitdefender
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Application: Fake News Identification Bitdefender

Goal: determine if a Tweet links to a fake news article

® I

Well, not *actually* conv free.

1st layer: "Per-patch fully-connected" == "conv layer

with 16x16 kernels and 16x16 stride" Tru e
other layers: "MLP-Mixer" == "conv layer with 1x1

kernels"

New paper from Brain Zurich and Berlin!

\WERGYE:' conv and attention free vision architecture:LYIREV VG
(arxiv.org/abs/2105.01601)
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Application: Fake News Identification Bitdefender

Goal: determine if a Tweet links to a fake news article

® I

Well, not *actually* conv free.

1st layer: "Per-patch fully-connected" == "conv layer

with 16x16 kernels and 16x16 stride" Tru e
other layers: "MLP-Mixer" == "conv layer with 1x1

kernels"

New paper from Brain Zurich and Berlin!

\WERGYE:' conv and attention free vision architecture:LYIREV VG
(arxiv.org/abs/2105.01601)

' Replying to @ I

An MLP is a conv net with a Kernel that is the size of the input and no stride

g
o1 u Q 33

False
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Application: Fake News Identification Bitdefender

Challenges:
¢ understanding news requires knowledge of political / social context

e often written in bad faith to appear real

® highly nuanced

[1]: Vosoughi et. al. The spread of true and false news online. Science (2018). 10/47
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Application: Fake News Identification Bitdefender

Challenges:
¢ understanding news requires knowledge of political / social context

e often written in bad faith to appear real

® highly nuanced

"Falsehood diffused significantly farther, faster, deeper, and more broadly than the truth"?

Idea
¢ Analyse the news diffusion patterns with GNNs.

[1]: Vosoughi et. al. The spread of true and false news online. Science (2018). 10/47



Application: Fake News Identification Bitdefender

e gather stories classified by fact-checking orgs like Snopes, PolitiFact
e for each story form a graph of all the tweets and retweets mentioning it
® edges are follow relations or retweet relations

[2]: Monti et. al. Fake news detection on social media using geometric deep learning (2019). 1/47
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Application: Fake News Identification Bitdefender

® apply standard GNN model
® node features:
o User profile (geolocalization, language, embedding of self-description, date of
account creation)
o Network and spreading (No. of followers, timestamps, No. of replies, quotes,
favorites and retweets for the source tweet)
o Content (embeddings of tweet text).
B Surprising: not that relevant!
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When to use GNNs? Bitdefender

o

® \What are the cases where it is beneficial to use GNNs?
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When to use GNNs? Bitdefender

CON
)e)

e What are the cases where it is beneficial to use GNNs?
e What design choices should be made for a specific task?
o Do we want sum or max in the aggregation?

o Should we share parameters between layers?

o Should we use distances or order information when we have them?
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When to use GNNs? Bitdefender

Usual deep Learning approach:
e |earn end-to-end f(X) from data with the specific model f (MLP, CNN, RNN etc.)
® cach model is appropriate in certain cases
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When to use GNNs?

Usual deep Learning approach:

e |earn end-to-end f(X) from data with the specific model f (MLP, CNN, RNN etc.)
® cach model is appropriate in certain cases

An inductive bias allows a learning algorithm to prioritize one solution over another,

independent of the observed data.

UNSTRUCTURED  SEQUENTIAL

Structure -‘ [ ] @
Model MLP RNN
Inductive -
Bias Weak Sequentiality

CNN

Locality

COMPLEX
RELATIONAL
STRUCTURE

ol
o
-

GNN

Strong
relational bias

Bitdefender
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Relational Reasoning Bitdefender

Manipulating structured data, that consists in multiple entities that establish various
relations between them.
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Relational Reasoning Bitdefender

Relational Reasoning
Manipulating structured data, that consists in multiple entities that establish various
relations between them.

From some perspective, relational reasoning could be appealing.
For example, a visual scene could be seen as:

® animage / a grid of points
® a set of objects with multiple relations between them
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Relational Inductive Biases Bitdefender

An inductive bias allows a learning algorithm to prioritize one solution over another,
independent of the observed data.

Relational inductive biases in GNN:
e explicit factorisation into nodes, each corresponding to an entity

e explicit modeling of pairwise relations between nodes
e flexibility in establishing different connectivity

® order invariant

[3] Battaglia et. al. Relational inductive biases, deep learning, and graph networks. 2018 16/47



When to use a GNN? Bitdefender

GNNs could be appropiate if:
e there exist entities and relations in the data

o explicit: social networks, molecules

o implicit: visual scenes, environments...

® the relational processing is beneficial

17/47



Bitdefender

Shortest path Problem

® | ets analyse a purely reasoning problem of finding the shortest path in a graph.

o Can GNNs solve this problem and how sample efficient are they?
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Bitdefender

Shortest path Problem

® | ets analyse a purely reasoning problem of finding the shortest path in a graph.

o Can GNNs solve this problem and how sample efficient are they?

GNN Method

for layerkin1.. Kdo
fornode :inV do

xf = fupd{xf_l’ fagg {f'msg(x?_l:x?_l)}
VieN;

end for
end for
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Bitdefender
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GNN Method Bellman-Ford Algorithm
forflayer l(; in1 nlfcfo foriterkin1.. K do
or node i in YV do i
o g - for node.z iny QO . o
i = Jupdl®; 7VJ;zég\g/ {fmsg(xi ™", @i )} dlk]lz] = rr\%n{ d[k —1][j] + cost(i,j)}
end for end for
end for end for

19/47



Bitdefender

Shortest path Problem

® | ets analyse a purely reasoning problem of finding the shortest path in a graph.
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Bitdefender

Shortest path Problem

® | ets analyse a purely reasoning problem of finding the shortest path in a graph.

o Can GNNs solve this problem and how sample efficient are they?

GNN Method Bellman-Ford Algorithm
for layerkin1.. Kdo foriterkin1.. Kdo
fornode i in V do fornode :inV do
of = fupa{al ™| fagg {frmse(@} ™t 25 71)} d[k][i] = 'man {d[k — 1][j] + cost(i, j)}
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end for end for
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Bitdefender

Task Alignment

o if the GNN learns to simulate the update step in the Dynamic Problem, it will solve
the problem

e if the operation is easy to lean, then the GNN can easily solve the problem

e if both are true, we say that the GNN is well aligned with the task

[4] Xu et. al. What Can Neural Networks Reason About? ICLR 2020 20/47



Bitdefender

Task Alignment

o if the GNN learns to simulate the update step in the Dynamic Problem, it will solve
the problem

e if the operation is easy to lean, then the GNN can easily solve the problem

e if both are true, we say that the GNN is well aligned with the task

We say that a model is aligned with a task, if by replacing some parts of the model with
some ideal operations we would solve the task. If the parts can easily learn the ideal
operations, we say that it is well aligned with the task.

Generally:

¢ |f a model is well aligned with a task, it will lean it easily
(it has low sample complexity).

[4] Xu et. al. What Can Neural Networks Reason About? ICLR 2020 20/47



Task Alignment Bitdefender
GNN Method Bellman-Ford Algorithm

for layerkin1.. Kdo foriterkin1.. Kdo

fornode i inV do for node i in V do

xf = fupd{xf_l7 fagg {fmsg(-r?_lfrlj_l)} d[k][1] = min{d[k — 1][j] + cost(i, j)}
VieEN; Vi

end for end for

end for end for

e What decision can we take to have the GNN "more aligned"?
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Task Alignment Bitdefender
GNN Method Bellman-Ford Algorithm

forlayerkin1.. Kdo foriterkin1.. Kdo

for node :in V do for node i in V do

2 = fupa{aE ™ fugy {moo(al ™ 2571} d[k]fi) = min{dlk — 1][j] + cost(i, )}
ViEN; Vi

end for end for

end for end for

e What decision can we take to have the GNN "more aligned"?
o use min as an aggregator function
o share the parameters between layers

® |sZ; = MLP([z1, x2,...xn]) well aligned?
o it is less aligned than the GNN functions

o it has to learn to create node pairs and then it has to select the minimum between
21/47



Alignment Bitdefender

Npard |

|
|

/ |
\ /
\ /
Vo opewe= )/
{ NPcompiete |/
H
4

PeNP P=NP

NP-Hard

Relational argmax Dynamic programming NP-hard problem
‘What are the colors of the What is the cost to defeat monster X Subset sum: Is there a
furthest pair of objects? by following the optimal path? subset that sums to 0?
95% 92% 9%6%  94%  91%
62% 72% 69% 60%
27%
9% 8%

GNN3  GNNf1 MLP GNN7 GNN4 GNN3 GNN2 GNN1  MLP GNN6  GNN1 MLP
Relational argmax Dynamic Programming NP - hard problem

(random = 50%)
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Alignment: Physical Particles

Dataset

GNNs

Graph Network:

Make Prediction,
Compare,
Update Weights

Analogy to Newtonian Mechanics

Nodes
Pair of nodes
Send Function: f,,
Aggregate Function: f,s4
Update Function: f,,

2020.

Particles
Two interacting particles (i,j)
Compute force Fj;
Sum into net force F,.;;
Compute acceleration a; = Fyet i /mi

[5]: Cranmer et. al. Discovering Symbolic Models from Deep Learning with Inductive Biases. Neurips
2



When to use a GNN? Bitdefender

® Apply GNNs on tasks that are well aligned with this model
o dynamic programming
o relational reasoning

e Apply GNNs when relational processing is beneficial
o explicit entities and relations: social networks, molecules

o implicit entities and relations: visual scenes, environments...

® Try to design your GNN to be as aligned as possible to your problem
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Application: Physical Particle Interactions Bitdefender

[6] Battaglia et. al. NeurIPS 2016

True Mo d | True

(-
Ly
]
E
F
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Application: Physical Particle Interactions

Bitdefender

Encode | Process Decode
V.
bt :) o I, 7 m+1 ¢
. €i.d o} €3 [ tezﬁ,j ¢

ee x T STt T ™ Tee

- ¢ & L. b (- (= be (- [ ¢ (=
[ [ L (¥

Encoder:

® each node corresponds to a particle

® link top-k nearest neighbors
® Node features:

o position and velocity
o particle type

[7] Gonzalez et al. ICML 2020
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Application: Physical Particle Interactions

Bitdefender
Encode | Process Decode
V]
bt 0 75 T s m4+1 ¢
¢ . €ij [ iei,j ie«'.: Vi o
—_— — ] —
¢ @ X; eV Pae Vi et ® o v ¢ ¢ Yi
(™ ¢ [* = b (" [ be (. [ L &
(= [ & (¥
Process:

e use 10 GNN layers

® |ocal propagation based on
neighbourhood

Decoder:

e predict next step attributes

® train based on node level loss
[7] Gonzalez et al. ICML 2020
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Application: Physical Particle Interactions Bitdefender
Observations:

® the method is traned for next step predictions but at test time is unrolled for
thousand of steps

® GNN method could generalise to 34 times more nodes at test time
o because the interactions to nearest neighbours
® relative positions are is better than global positions

o underlying physical processes are invariant to spatial position,

Overall:
® GNN is aligned to the task
e the GNN has built in good relational biases
o use local interactions

o relative position for built in spatial invariance
28/47



Transformer Bitdefender

Task: analyse a sequence of words. X = z1,x9,...,TN.

0000000
LN Roa BN N N J

Add & Norm
Feed
Forward

Add & Norm

Multi-Head
Attention

Positional A
Encoding
Input
Embedding
Inputs

29/47



Transformer Bitdefender

Task: analyse a sequence of words. X = z1,x9,...,TN.

0000000
LN Roa BN N N J Self - Attention

Scaled Dot-Product Attention . .
® Process a sequence in multiple layers
® Each element attends to all other elements

in the previous layer

MatMul

QKT
Vd

® where Q = XW,, K = XW;, V = XW,

Y = softmax(

)V
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Transformer

Self-attention

QK"
Vd
where Q = XW,, K = XW,, V = XW,

Y = softmax( 1%

Q c RNXC KT c RCXN

V e RVxC
O
e
L]

Bitdefender
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Transformer Bitdefender

Self-attention

T
Y:softmax(jS_i 1%
where Q = XW,, K = XW,, V = XW,
A c RNXN 174 c RNXC
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Transformer Bitdefender

Self-attention

T
Y = softmax(Qj(8 )% GCN

m Y = o (HXW)

where Q = XW,, K = XW;, V = XW,
A e RV V e RV*C
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Transformer Bitdefender

QK™
, V= Nz
00000000 d
Query Key Value

cece0000 ;3 T W)
vj

J/

v

v~

a(xi’mj)
e 9
@ Vi = fupa(wi, Y {al@i,2;)0(x5)})
& ® ViEN;
— 1
® - @ a(xi,xj) = %(wiWq)T(ﬂﬂjWk)

P(z5) = ;W
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Transformer Bitdefender

Transformer is a special case of Graph Neural Networks where

® all the nodes are connected
® pairwise messages are weighted by dot product attention
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Transformer - NLP

Bitdefender

Transformers are now the standard model in NLP.

BERT [8]
S wmw ww N e fen o ——

Masked Sertence A Masked Senience | LoL
AN Unlabeled Sentence Aand 8 Pair / \‘w %

Pre-training Fine-Tuning

Question rogan

GPT-3 [9]
Zero-shot

The model predicts the answer given only a natural language
description of the task. No gradient updates are performed.

Translate English to French: task description
cheese => prompt
One-shot

In addition to the task description, the model sees a single
example of the task. No gradient updates are performed.

Translate English to French: task description
sea otter => loutre de mer example
cheese => prompt
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Transformer - Vision Bitdefender

Transformers are becoming popular in CV.

ViT [10]

Transformer Encoder

s - g Q) ) 6) 8)8) & 0)8) )

Ic‘i:g:]lecf\lﬂdm [ Linear Projection of Flattened Patches ]
SRR N O O O A
o —— 5 I O S
]
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Transformer - Vision

Transformers are becoming popular in CV.

ViT [10]

Bitdefender

TimeSformer [11]

Is Space-Time Attention All You Need for Video U

Transformer Encoder

frame t- §
BEE=
HERE

frame t

v dfERdS400

* Extra learnable
Linear Projection of Flattened Patches

[class] embedding
SEE I A
[ A
T

/4

frame t+ &
REFENE
HEE

‘Space Attention (S)

K% EENE NNE-
EEEENSE NS

g

int Space-Time i -Time  Sparse Local Giobal Axial Attention
Attention (ST) ntion (T+ tention (L+ (T+WH)
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GNN - Challenges: Scalability Bitdefender

Context:
® ML methods work with mini-batches where each element is independent

® in many node level graph tasks, the entire dataset forms a large graph where each
node is connected to many other ones.

Problem:
¢ the whole graph is too big to fit into memory.

o process independently the neighbourhood of each node

o the neighbourhood could still grow exponentially:

35/47



Bitdefender

Challenges: Scalability

Solution:
e sample [12],[13] the nodes, forming sub-graphs and apply the GNN over them

Benefits:
e can work with very large graphs

® the sampling acts as a regularizer, similar to dropout

Sub-Graph Sub-Graph
Full Graph node 1 node 2
/ /
K o K o
v Y
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Challenges: Oversmoothing Bitdefender

If we want node information from a K-order neighbourhood
® use K layers of Graph propagation
® ysual problems
o harder to optimize due to vanishing / exploding gradients
o overfitting due to large number of parameters
® graph propagation problem: oversmoothing

o graph propagation can be seens as "smoothing" the a node according to its
neighbourhood

o if we do many propagations, different nodes would become almost
indistinguishable, hurting node-level tasks

37/47



Challenges: Oversmoothing Bitdefender

Nodes with similar structure in their neighbourhoods would end up indistinguishable,
regardless of their initial features.

More often:
® when the graph is dense

¢ when using self-loop in the update function

38/47



Oversmoothing: Solutions Bitdefender

Solutions:
e residual Connections [14, 15]:

o skip one or more layers
- add the representations of a node from different layers h* 1 < pF*1 4 pk

o takes more into account the identity of each node
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Oversmoothing: Solutions Bitdefender

Solutions:
¢ make the graph more sparse: e.g apply dropout on edges [16]

e PairNorm[17]: add a normalisation term that encourages 1:*" and h! to remain
close while neighbouring nodes maximise their similarity and distant does
minimise their similarity

40/47



Connections to PageRank Bitdefender

Long range are obtained by stacking multiple layers: Ac(A..c(AXW1).W,,_1)W,
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Connections to PageRank Bitdefender

Long range are obtained by stacking multiple layers: Ac(A..c(AXW1).W,,_1)W,

Random Walk
e start in a node and randomly move to adjacency nodes.

e W =1TIand X € R" avector containing the probability of being in each node and
A is the transition probability

e this arrives at the PageRank algorithm X/+! = AX?!

41/47



Connections to Personalised PageRank Bitdefender

® PageRank converges to an Y that does not depend of the initial X

® this is related to the oversmoothing problem in the GNN

® in Personalised PageRank the initial starting point count more

o at each step there is a chance « to go back to the initial state
X = (1 - a)AX! + aX”

42/47



Connections to Personalised PageRank Bitdefender

PageRank converges to an Y that does not depend of the initial X

this is related to the oversmoothing problem in the GNN

in Personalised PageRank the initial starting point count more

o at each step there is a chance « to go back to the initial state
X = (1 - a)AX! + aX”

® we can use a similar formulation in our graph propagation to alleviate the
oversmoothing

o the residual connection could be seen as a non-probabilistic variant

42/47



Connections to Personalised PageRank Bitdefender

How can it be used in GNNs?
¢ make a prediction independently at each node and propagate the answer [18]

X! = xWw
X = (1-a)AX" + aX?
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Connections to Personalised PageRank Bitdefender

How can it be used in GNNs?
¢ make a prediction independently at each node and propagate the answer [18]

X! = xWw
X = (1-a)AX" + aX?

e this is somehow related to label propagation [19]

43/47



Connections to Personalised PageRank Bitdefender

Alternatively:
e compute Personalized Page Rank diffusion matrix S [20][21]
e gsparsify the diffusion matrix
® and useitina GCN

Y = o(SXW)
—_— — oo .:.
—~ P )
: o o:o S
—% =,
_— e o...’. .
hd New graph

Graph diffusion Density defines edges Sparsify edges
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Overview Bitdefender

® Graph Neural Network framework

45/47



Overview Bitdefender

® Graph Neural Network framework

e application: fake news detection

45/47



Overview Bitdefender

® Graph Neural Network framework

e application: fake news detection

® When to use GNNs?

o relational inductive biases

o alignment

45/47



Overview

® Graph Neural Network framework
e application: fake news detection
® When to use GNNs?

o relational inductive biases

o alignment

® application: simulating particles

Bitdefender

45/47



Overview Bitdefender

® Graph Neural Network framework
e application: fake news detection
® When to use GNNs?

o relational inductive biases

o alignment

application: simulating particles

Transformers are GNNs

45/47



Overview Bitdefender

® Graph Neural Network framework
e application: fake news detection

® When to use GNNs?

o relational inductive biases

o alignment
® application: simulating particles
® Transformers are GNNs

® challenges: oversmoothing

45/47



Overview Bitdefender

® Graph Neural Network framework
e application: fake news detection

® When to use GNNs?
o relational inductive biases
o alignment
® application: simulating particles
e Transformers are GNNs
® challenges: oversmoothing

® connections to PageRank
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Graph Neural Networks - Resources Bitdefender

For a more in depth understanding of Graph Neural Networks and other related areas,
please take a look:

® Michael Bronstein, Geometric deep learning, from Euclid to drug design

® Petar Velickovié, Theoretical Foundations of Graph Neural Networks

Jure Leskovec, CS224W: Machine Learning with Graphs

William L. Hamilton, Graph Representation Learning Book

Razvan Pascanu, GraphNets - Lecture at TMLSS (Transylvanian Machine Learning
Summer School)

Xavier Bresson, Convolutional Neural Networks on Graphs

Michael Bronstein, Graph Deep Learning Blog
46/47


https://www.youtube.com/watch?v=8IwJtFNXr1U
https://www.youtube.com/watch?v=uF53xsT7mjc
http://web.stanford.edu/class/cs224w/
https://www.cs.mcgill.ca/~wlh/grl_book/
https://www.youtube.com/watch?v=v3jZRkvIOIM
https://towardsdatascience.com/graph-deep-learning/home

Thank You! | R

Andrei Nicolicioiu lulia Duta
anicolicioiu@bitdefender.com iduta@bitdefender.com -

[Ef#9 UNIVERSITATEA DIN
=

= BUCURESTI . Bitdefender
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References | Bitdefender
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