Recurrent Space-time Graph Neural Network

Andrei Nicolicioiu 1 , Iulia Duță 1 , Marius Leordeanu 1,2,3

iduta@bitdefender.com, anicolicioiu@bitdefender.com, marius.leordeanu@imar.ro

¹Bitdefender, Romania ²University Politehnica of Bucharest, Romania ³Institute of Mathematics of the Romanian Academy

1. Overview

Graph Neural Nets for Video Classification

Our approach:

- propose a neural graph model recurrent in space and time
- extract features using backbone model
- create graph with info from video features
- process video by message passing to get long range interactions: **Space an Time Stages**

Main Contributions:

- proposed a Graph model recurrent and factorized
- introduce a **synthetic dataset** involving space-time interactions
- obtain **state-of-the-art** results on Something-Something dataset

2. Graph Creation

- features from 2D / 3D **backbone** at multiple scales
- each node receives information **pooled** from a region
- the nodes are **connected** if they come from neighbouring or overlapping regions

3. Time Processing Stage

- node: current spatial info + previous time step info
- \bullet each node updates its spatial information using a $\mathbf{recurrent}$ function
- no exchange messages between nodes $\mathbf{h}_{i,time}^{t,k} = f_{time}(\mathbf{v}_{i,space}^k, \mathbf{h}_{i,time}^{t-1,k}).$

4. Space Processing Stage

• **Send**: message should represent pairwise spatial interaction

$$f_{send}(\mathbf{v}_j, \mathbf{v}_i) = MLP_s([\mathbf{v}_j|\mathbf{v}_i])$$

• Gather: aggregate messages by an attention mechanism

$$f_{gather}(\mathbf{v}_i) = \sum_{j \in \mathcal{N}(i)} \alpha(\mathbf{v}_j, \mathbf{v}_i) f_{send}(\mathbf{v}_j, \mathbf{v}_i)$$

• **Update**: incorporate global context into each local information

$$f_{space}(\mathbf{v}_i) = MLP_u([\mathbf{v}_i|f_{gather}(\mathbf{v}_i)])$$

- applied at each time step
- Positional Awarness:
 - each source node should be
 aware of the destination node
 position
 - we concatenate the position of both nodes to the input of f_{send}
 - position is represented by gaussian centered in node's location

5. RSTG Architecture Figure TIME FRACTED FRACTED FRATURES FR

7. Something-Something Results

Table 1: Top-1 and Top-5 accuracy on Something-Something-v1.

Model	Top-1	Top-5
C2D TRN [1] ours C2D + RSTG	31.7 34.4 42.8	64.7 - 73.6
MFNet-C50 [2] I3D [3] NL I3D [3] NL I3D + Joint GCN [3]	40.3 41.6 44.4 46.1	70.9 72.2 76.0 76.8
$ECO_{Lite-16F}[4]$ $MFNet-C101[2]$ $I3D[5]$ $S3D-G[5]$	42.2 43.9 45.8 48.2	- 73.1 76.5 78.7
RSTG-to-vec RSTG-to-map res2 RSTG-to-map res3 RSTG-to-map res4 RSTG-to-map res3-4	47.7 46.9 47.7 48.4 49.2	77.9 76.8 77.8 78.1 78.8
ours I3D + RSTG	49.2	78.8

8. SyncMNIST Results

Table 2: Accuracy on SyncMNIST datasets

Model	3Sync	5Sync
Mean + LSTM	77.0	_
Conv + LSTM	95.0	39.7
I3D [6]	_	90.6
Non-Local [7]	-	93.5
RSTG: Space-Only	61.3	_
RSTG: Time-Only	89.7	-
RSTG: Homogenous	95.7	58.3
RSTG: 1-temp-stage	97.0	74.1
RSTG: All-temp-stages	98.9	94.5
RSTG: Positional All-temp	_	97.2

9. SyncMNIST Dataset

6. Scheduler

- for more expressive power we alternate one Time Processing Stage with one Space Processing Stage
- K alternating stages + a final time stage

10. References

[1] Zhou et al. ECCV 2018, [2] Lee et al. ECCV 2018, [3] Wang and Gupta ECCV 2018, [4] Zolfaghari et al. ECCV 0218, [5] Xie et al. ECCV 2018, [6] Carreira and Zisserman CVPR 2017, Wang et al. CVPR 2018