

Weakly supervised approaches for Dense Captioning

Iulia Duță iuliaduta94@gmail.com

November 15, 2017

Introduction

Image Dense Captioning

Video Dense Captioning

Captioning: definition

 Captioning: the task of generating text descriptions of images/videos.

The man at bat readies to swing at the pitch while the umpire looks on.

A large bus sitting next to a very tall building.

Full-Image Captioning vs Dense-captioning I

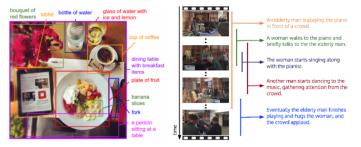
Full-Image Captioning: the task of generating a set of descriptions of the whole image/video

"man in black shirt is playing guitar."

- 1. A child is cooking in the kitchen.
- A girl is putting her finger into a plastic cup containing an egg.
- 3. Children boil water and get egg whites ready.
- 4. People make food in a kitchen.
- 5. A group of people are making food in a kitchen.
- easier to collect annotations
- simpler input => simpler models
- create general descriptions

Full-Image Captioning vs Dense-captioning II

 Dense-captioning: the task of generating a set of descriptions across regions of an image/ concurrent events in a video



- hard to annotate
- multiple instance models
- more detailed, complementary descriptions

Introduction

Image Dense Captioning

Video Dense Captioning

 Deep visual-semantic alignments for generating image description - Karpathy and Li [2014]

Overview

goal:

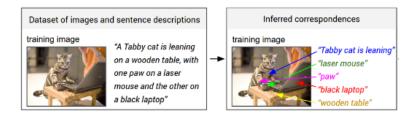
- generate dense descriptions of images
- problems:
 - the model should build representions for both image and language space
 - lack of datasets for dense image captioning

contributions:

- learn to infer the latent alignment between segments of sentences and the region of the image that they describe
- create a multimodal RNN to generate dense captioning of an image

Align visual and language data I

- **given**: (full-image, sentences) pairs
- goal: generate relevant (visual regions, sentence snippets) pairs
- motivation: descriptions written by people make frequent references to certain locations in the image

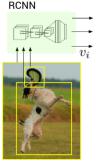


- 1. use RCNN + CNN for visual representation
- 2. use a bidirectional RNN to compute word representation
- 3. introduce a novel objective function

Image representation

- detect objects using Regional Convolutional Neural Network(RCNN) Girshick et al. [2013]
- 2. select top 19 detected locations
- 3. for each detected bounding box compute the representation:

$$v = W_m[CNN_{\theta_c}(I_b)] + b_m \tag{1}$$



- Ib pixels inside each bounding box
- CNN_{θc} 4096-dimensional activations of the FC immediatly before the classifier of a CNN
- W_m embedding matrix 1600 x 4096

Sentence representation

solutions:

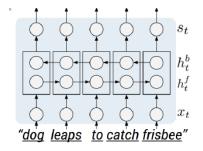
- no context: project every individual word into an embedding
- small context: word bigram, dependency tree relations
- full context: compute representation using a Bidirectional Recurrent Neural Network (BRNN)

Sentence representation

solutions:

- no context: project every individual word into an embedding
- small context: word bigram, dependency tree relations
- full context: compute representation using a Bidirectional Recurrent Neural Network (BRNN)

$$\begin{array}{c|c} x_t = W_w 1_t & \longrightarrow \mbox{word2vec(fix)} \\ e_t = f(W_e x_t + b_e) & \longrightarrow \mbox{embedding} \\ h_t^{\ f} = f(e_t W_f h_{t-1}^{\ f} + b_f) & \longrightarrow \mbox{forward pass} \\ h_t^b = f(e_t + W_b h_{t+1}^b + b_b) & \longrightarrow \mbox{backward pass} \\ s_t = f(W_d(f_t^f + h_t^b) + b_d) & \longrightarrow \mbox{sentence representation} \end{array}$$



- remember: no region-word annotation, the supervision is at the level of image-sentences
- solution: formulate an image-sentence score as a function of region-word score

Alignment model

▶ How similar are **i**th **region** and **t**th **word**?

Alignment model

▶ How similar are **i**th **region** and **t**th **word**?

 $v_i^T s_t$

How similar are kth image and Ith sentence?

$$S_{kl} = \sum_{t \in g_l} \sum_{i \in g_k} max(0, v_i^T s_t)$$

 g_k - set of image fragments g_l - set of sentence words

Alignment model

▶ How similar are **i**th **region** and **t**th **word**?

 $v_i^T s_t$

How similar are kth image and Ith sentence?

$$S_{kl} = \sum_{t \in g_l} \sum_{i \in g_k} max(0, v_i^T s_t)$$

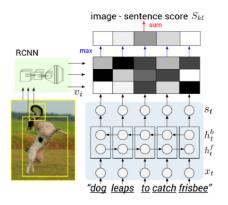
 g_k - set of image fragments g_l - set of sentence words

$$S_{kl} = \sum_{t \in g_l} \max_{i \in g_k} (0, v_i^T s_t)$$

Alignment loss

- assume that (image k, sentence k) is a good match
- Loss to optimize:

$$C(\theta) = \sum_{k} \left[\sum_{l} max(0, S_{kl} - S_{kk} + 1) + \sum_{l} max(0, S_{lk} - S_{kk} + 1)\right]$$
(2)



From words to text-segment

problems:

- each word are assigned independently to a region
- there are words that has no correspondence in image (stopwords)
- naturally, continuous sequences of words are more likely allign to a single bounding box. Not in our case.

From words to text-segment

problems:

- each word are assigned independently to a region
- there are words that has no correspondence in image (stopwords)
- naturally, continuous sequences of words are more likely allign to a single bounding box. Not in our case.
- solution: formulate an energy function that encourage neighbouring words to be aligned to the same region

$$E(a) = \sum_{j=1..N} v_{a_j}^{T} s_j + \sum_{j=1..N-1} \beta \mathbb{1}[a_j = a_{j+1}]$$

$$a^* = \operatorname{argmax} E(a)$$

- a_j bounding box aligned to j^{th} word
- β controls the affinity towards longer phrases

From words to text-segment

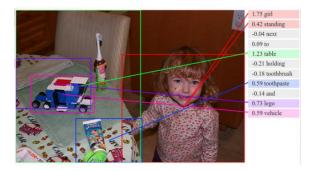
problems:

- each word are assigned independently to a region
- there are words that has no correspondence in image (stopwords)
- naturally, continuous sequences of words are more likely allign to a single bounding box. Not in our case.
- solution: formulate an energy function that encourage neighbouring words to be aligned to the same region

$$E(a) = \sum_{j=1..N}^{N} v_{a_j} s_j + \sum_{j=1..N-1}^{N} \beta \mathbb{1}[a_j = a_{j+1}]$$

$$a^* = \operatorname{argmax} E(a)$$

- a_j bounding box aligned to j^{th} word
- β controls the affinity towards longer phrases
- goal: given v_i and s_t (previous optimization), find best alignments a that maximize the energy - dynamic programming



► the similarity measure S_{kl} = ∑_{t∈gl} max(0, v_i^Ts_t) encourage discriminative entitites and discriminative words to have higher magnitudes

- **task**: Image-Sentence ranking experiments
- experiment: given a query, sort based on S_{kl}
- metrics:
 - R@K fraction of times a correct item was found in top K
 - Med r median rank of the closest ground truth in the list

		Image A	Annotation	1	Image Search						
Model	R@1	R@5	R@10	Med r	R@1	R@5	R@10	Med r			
Flickr30K											
SDT-RNN (Socher et al. [49])	9.6	29.8	41.1	16	8.9	29.8	41.1	16			
Kiros et al. [25]	14.8	39.2	50.9	10	11.8	34.0	46.3	13			
Mao et al. [38]	18.4	40.2	50.9	10	12.6	31.2	41.5	16			
Donahue et al. [8]	17.5	40.3	50.8	9	-	-	-	-			
DeFrag (Karpathy et al. [24])	14.2	37.7	51.3	10	10.2	30.8	44.2	14			
Our implementation of DeFrag [24]	19.2	44.5	58.0	6.0	12.9	35.4	47.5	10.8			
Our model: DepTree edges	20.0	46.6	59.4	5.4	15.0	36.5	48.2	10.4			
Our model: BRNN	22.2	48.2	61.4	4.8	15.2	37.7	50.5	9.2			
Vinyals et al. [54] (more powerful CNN)	23	-	63	5	17	-	57	8			
MSCOCO											
Our model: 1K test images	38.4	69.9	80.5	1.0	27.4	60.2	74.8	3.0			
Our model: 5K test images	16.5	39.2	52.0	9.0	10.7	29.6	42.2	14.0			

Table 1. Image-Sentence ranking experiment results. $\mathbb{R} \otimes \mathbb{K}$ is Recall $\otimes \mathbb{K}$ (high is good). $\mathbb{M} \otimes \mathbf{r}$ is the median rank (low is good). In the results for our models, we take the top 5 validation set models, evaluate each independently on the test set and then report the average performance. The standard deviations on the recall values range from approximately 0.5 to 1.0.

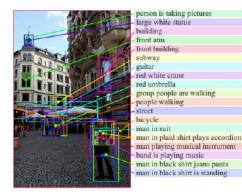
Generate description I

- Two kind of description:
 - full-image captioning: input = full image

boy is doing backflip on wakeboard.

Generate description II

dense captioning: input = regions from previous model



Model

standard architecture: CNN + RNN

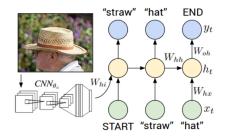
$$b_{v} = W_{hi}[CNN_{\theta_{c}}(I)]$$

$$h_{t} = f(W_{hx}x_{t} + W_{hh}h_{t-1} + b_{h} + 1(t = 1) \circ b_{v})$$

$$y_{t} = softmax(W_{oh}h_{t} + b_{o})$$

Model

standard architecture: CNN + RNN



- **task**: Generate sentence from full image
- experiment: Given one image, generate sentence
- metrics: BLEU, METEOR, CIDEr

		Flickr8K Flickr30K					MSCOCO 2014							
Model	B-1	B-2	B-3	B-4	B-1	B-2	B-3	B-4	B-1	B-2	B-3	B-4	METEOR	CIDEr
Nearest Neighbor	_	_	_	_	-	_	_	_	48.0	28.1	16.6	10.0	15.7	38.3
Mao et al. [38]	58	28	23	_	55	24	20	_	_	_	_	_	_	_
Google NIC [54]	63	41	27	_	66.3	42.3	27.7	18.3	66.6	46.1	32.9	24.6	_	_
LRCN [8]	_	_	_	_	58.8	39.1	25.1	16.5	62.8	44.2	30.4	_	_	_
MS Research [12]	_	_	_	_	-		_	_	_	_	_	21.1	20.7	_
Chen and Zitnick [5]	_	_	_	14.1	—	_	_	12.6	_	_	_	19.0	20.4	_
Our model	57.9	38.3	24.5	16.0	57.3	36.9	24.0	15.7	62.5	45.0	32.1	23.0	19.5	66.0

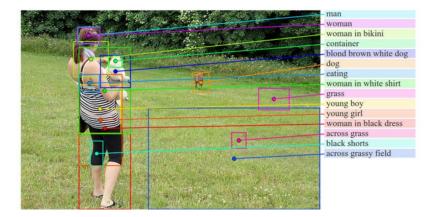
Table 2. Evaluation of full image predictions on 1,000 test images. **B-n** is **BLEU** score that uses up to n-grams. High is good in all columns. For future comparisons, our METEOR/CIDEr Flickr8K scores are 16.7/31.8 and the Flickr30K scores are 15.3/24.7.

woman plays volleyball women compete in volleyball match in london 2012 olympics woman in bikini is jumping over hurdle

- **task**: Generate snippets of text from regions of image
- experiment: Given one image, generate (regions, snippets) basen on alignments model, than generate captioning for each one
- Create a new dataset from AMT only for test time

Model	B-1	B-2	B-3	B-4
Human agreement	61.5	45.2	30.1	22.0
Nearest Neighbor	22.9	10.5	0.0	0.0
RNN: Fullframe model	14.2	6.0	2.2	0.0
RNN: Region level model	35.2	23.0	16.1	14.8

Table 3. BLEU score evaluation of image region annotations.



Introduction

Image Dense Captioning

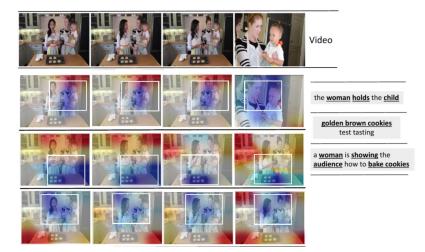
Video Dense Captioning

 Weakly Supervised Dense Video Captioning - Shen et al. [2017]

- **goal**: generate dense captioning for video
- problems:
 - no dense annotation for video-sequence corespondence
 - no explicit segmentation of video into sequences

contributions:

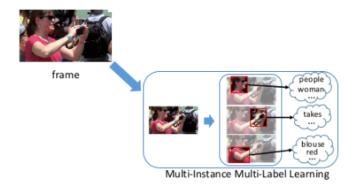
- novel dense video captioning approach
- firs dense video captioning model with only video-level sentence annotation
- create diverse captioning



- visual sub-model Lexical FCN
- discover region-sequence submodular maximization
- language sub-model sequence-to-sequence

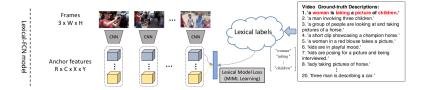
Lexical FCN Model

- learn good representation of each regions
- map frame regions to lexical labels



Lexical FCN Model

- 1. build a lexical vocabulary from training set
- 2. create a FCN model trained on ImageNet.
 - ▶ VGG-16 re-cast FC to Conv => 4x4x4096
 - Resnet-50 delete final softmax layer => 4x4x2048
 => 16 regions per frame, each having 4096/2048 chanels
- 3. sample frames, resize to 320 pixels and fine-tune using MIML loss



MIML loss

$$\blacktriangleright L(\mathbf{X}, \mathbf{y}; \theta) = \frac{1}{N} \sum_{i=1}^{N} [\mathbf{y}_i \log \hat{\mathbf{p}}_i + (1 - \mathbf{y}_i) \log(1 - \hat{\mathbf{p}}_i)]$$

$$p_{ij}^w = \sigma(w_w x_{ij} + b_w) \hat{p}_i^w = 1 - \prod_{x_{ij} \in \mathbf{X}_i} (1 - p_{ij}^w)$$

$$p^w = \max_i p_i^w N$$
 - number of frames

$$heta$$
 - parameters

$$x_{ij}$$
 - last layer of FCN

- y_i words from sentence
- \hat{p}_i^w probability of w word in frame i
- p_{ij}^{w} probability vector of w word in region j of frame i p^{w} probability of w word in region-sequence

 region-sequence: a sequence of regions, one from each frame (16^{nr_frames} sequences)

▶ a sequence A_t is described by $f = [f_{inf}, f_{div}, f_{coh}]^T$, where:

- region-sequence: a sequence of regions, one from each frame (16^{nr_frames} sequences)
- ▶ a sequence A_t is described by $f = [f_{inf}, f_{div}, f_{coh}]^T$, where:
 - ► **f**_{inf} measures the **informativeness** of the sequence $f_{inf}(x_v, A_t) = \sum_{\substack{w \\ i \in A_t}} (p^w);$ $p^w = \max_{i \in A_t} p_i^w$

- region-sequence: a sequence of regions, one from each frame (16^{nr_frames} sequences)
- ► a sequence A_t is described by $f = [f_{inf}, f_{div}, f_{coh}]^T$, where:
 - ► **f**_{inf} measures the **informativeness** of the sequence $f_{inf}(x_v, A_t) = \sum_{\substack{w \ v \in A_t}} (p^w);$ $p^w = \max_{i \in A_t} p_i^w$
 - f_{coh} ensures the temporal coherence. we select regions with the smallest changes temporally

$$f_{coh} = \sum_{r_s \in A_{t-1}} \langle x_{r_t}, x_{r_s} \rangle$$

- region-sequence: a sequence of regions, one from each frame (16^{nr_frames} sequences)
- ► a sequence A_t is described by $f = [f_{inf}, f_{div}, f_{coh}]^T$, where:
 - Finf measures the informativeness of the sequence finf (x_v, A_t) = ∑_w(p^w); p^w = max p^w_{i∈At} p^w_i
 - f_{coh} ensures the temporal coherence. we select regions with the smallest changes temporally

$$f_{coh} = \sum_{r_s \in A_{t-1}} < x_{r_t}, x_{r_s} >$$

 f_{dif} measures the degree of difference between a candidate and all the existing region-sequences

$$f_{div} = \sum_{i=1}^{N} \int_{w} p_i^{w} \log \frac{p_i^{w}}{q^{w}} dw$$

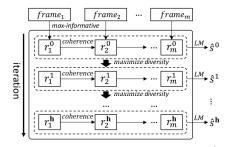


Figure 4: Illustration of region-sequence generation. r_i^j is the *j*-th region-sequence in *i*-th frame and '*LM*' denotes language model.

- ► **f**_{inf} measure the **informativeness** of the sequence
- ► f_{coh} ensure the temporal coherence. we select regions with the smallest changes temporally
- f_{dif} measure the degree of difference between a candidate and all the existing region-sequences

- objective function to optimize: $R(x_{v}, A) = w_{v}^{T} f(x_{v}, A)$ $A^{*} = \arg \max_{A \in S_{v}} R(x_{v}, A)$
- ▶ There are 2 unknown elements:
 - parameter w_v
 - ground truth (region, sequence) pair

• **Q**: How to find best A, given w_v ?

► Q: How to find best A, given w_v? A: Greedy

CELF optimization method

• Define marginal gain: $L(w_v; r) = R(A_{t-1} \cup \{r\}) - R(A_{t-1})$

► CELF greedy algorithm:

1.
$$A_0 = \emptyset$$

 $t = 1$
2. $r_t = \arg \max_{r \in S_t} L(w_v; r)$
 $A_t = A_{t-1} \cup \{r\}$
 $t = t+1$

3. repeat step 2 until the end of the video

Submodular maximization

► Def: Given a function f and arbitrary sets A ⊆ B ⊆ S_v \ r f is submodular if it satisfies:
f(A) > f(B) = f(B)

 $f(A \cup \{r\}) - f(A) \ge f(B \cup \{r\}) - f(B)$

- $[f_{inf}, f_{div}, f_{coh}]^T$ is a submodular function
- Submodular functions have many properties desirable for optimization
- A greedy algorithm yields a good aproximation of maximum solution (CELF - cost-effective lazy forward-selection method)

- Q: How to find best region from a set that match sentence s?
- ► A: WTA algorithm

WTA algorithm:

- 1. extract words from sentence
- 2. compute probability of each word in each region-sequence:

 $p_i^w = \max_j p_{ij}^w$, where p_{ij}^w is the output of FCN

- 3. threshold p_i^w with θ
- 4. compute matching score: $f_i = \sum_{w \in V} p_i^w$
- 5. $i^* = \arg \max_i f_i$

Optimize wv

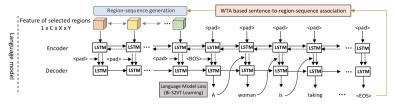
Q: How to find best w_v, given N pairs (region, sentence)
 A: min_{w_v≥0} 1/_N Σ^N_{i=1} max_{r∈ri} L_i(w_v; r) + λ/2 ||w_v||²

- But we do not know either w_v or ground truth pairs
- Use alternative optimization:
 - **1**. initialize $w_v = \mathbf{1}$
 - 2. using w_v generate a sequences with submodular maximization
 - 3. associate sentences to sequences using WTA
 - 4. using pairs from step 3, optimize w_v
 - 5. repeat step 2-4 until w_v converge

Language model

use sequence-to-sequence model S2VT to generate language:

- encoder: bi-directional LSTM
- decoder: LSTM



Model	METEOR	BLEU@4	ROUGE-L	CIDEr
Mean-Pooling [49]	23.7	30.4	52.0	35.0
Soft-Attention [53]	25.0	28.5	53.3	37.1
S2VT [48]	25.7	31.4	55.9	35.2
ruc-uva [6]	27.5	39.4	60.0	48.0
VideoLAB [34]	27.7	39.5	61.0	44.2
Aalto [40]	27.7	41.1	59.6	46.4
v2t_navigator [15]	29.0	43.7	61.4	45.7
Ours w/o category	27.7	39.0	60.1	44.0
Ours category-wise	28.2	40.9	61.8	44.7
Ours + C3D + Audio	29.4	44.2	62.6	50.5

Table 3: Comparison with state of the arts on the *validation set* of MSR-VTT dataset. See texts for more explanations.

Model	METEOR	BLEU@4	ROUGE-L	CIDEr
ruc-uva [<mark>6</mark>]	26.9	38.7	58.7	45.9
VideoLAB [34]	27.7	39.1	60.6	44.1
Aalto [40]	26.9	39.8	59.8	45.7
v2t_navigator [15]	28.2	40.8	60.9	44.8
Ours	28.3	41.4	61.1	48.9

Table 4: Comparison with state of the arts on the *test set* of MSR-VTT dataset. See texts for more explanations.

- diversity measure: $D_{div} = \frac{1}{N} \sum_{s^i, s^j \in S; i \neq j} (1 \langle s_i, s_j \rangle)$
- LSA representation

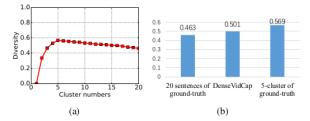


Figure 6: (a) Diversity score of clustered ground-truth captions under different cluster numbers; (b) Diversity score comparison of our automatic method (middle) and the ground-truth.

Region Sequences & DenseVidCap

a man is drinking from a cup

a man is drinking from a bottle

a man in a suit is talking to another man in a suit

Ground-truth

two men are drinking alcohol two men are talking indoors credits are shown as two men have a discussion a man with a bottle clinks the glass of another and both take a drink two men are talking about something and drinking something

Figure 9: Left: Examples of dense sentences produced by our *DenseVidCap* method and corresponding *region sequences*; Right: Ground-truth (video6974).

Region Sequences & DenseVidCap	Ground-truth		
	a man is running		
a man is running on a track	a group of men are running down a race track		
	athletes are running around a track		
	a group of people are running as fast as they		
a group of men running in a race track	can		
	men run a race around a track while a male voice narrates		
a track race track and field runners run and running fast	several young men are racing in a track meet		
in a race			

Figure 10: Left: Examples of dense sentences produced by our *DenseVidCap* method and corresponding *region sequences*; Right: Ground-truth (video6967).

Questions?

References I

- R. B. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. *CoRR*, abs/1311.2524, 2013. URL http://arxiv.org/abs/1311.2524.
- A. Karpathy and F. Li. Deep visual-semantic alignments for generating image descriptions. *CoRR*, abs/1412.2306, 2014. URL http://arxiv.org/abs/1412.2306.
- Z. Shen, J. Li, Z. Su, M. Li, Y. Chen, Y. Jiang, and X. Xue. Weakly supervised dense video captioning. *CoRR*, abs/1704.01502, 2017. URL http://arxiv.org/abs/1704.01502.