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(. Results 8. Qualitative Results

CIDEr Meteor Rouge|Bleu 4
v2t navig [1] 44.8 28.2 60.9 40.8 . Top captions
Top captions a group of people are sitting in a line
MT-Ent [2] 47.1 28.8 60.2 40.8 a girl is knocking on the wall and texting Wi%h aiigef p &
HRL [3] 48.0 28.7 61.7 41.3 N g%rl %aymg.; - .bed and knockmg on the wal a man is sitting in a chair with a tiger
] a girl is laying in bed and knocking on the wall < talki bout a ti
dense [4] 48.9 28.3 0l.1 41.4 a girl is knocking on a wall and texting Z EZE ;Snfiaa lvfflfrr?ar?l;rj silt%:?;g 1 a table
CIDEnt-RL [5]| 51.7 28.4 61.4 | 40.5
TGM [6] 52.9 | 29.7 | - | 45.4
Ours 53.8 29.7 63.0 44.2 Human annotations Human annotations

a girl in bed
a girl knocking on a wall
a girl lays in bed and uses her phone

a story about a family that has seven tigers
five people sitting on a couch and a tiger
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aying by their feet

evaluation metrics on MSR-VTT 2016 test set.
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